Shark Tales: JFK, Mercury 7 astronauts and shark repellents

This seems such an odd topic from the start, but I thought it’s worth revisiting in celebration of today’s 50th anniversary of John Glenn’s orbital flight around the earth.  John Glenn and Scott Carpenter (who will be celebrating his own 50th anniversary in May) are the last surviving members of the original seven astronauts of NASA’s Project Mercury.  Though two other Russian cosmonauts had orbital flights before his, John Glenn’s flight was America’s first and its success changed the momentum of the race to the moon to America’s favor.

Looking back 50 years, I am always amazed at the significant advances mankind has made as a result of the space race with Soviet Russia — calculators, computers, internet, among many.  Mankind seems to excel when in competition, whether at war, in commerce or in the arts. The rudimentary equipment half a century ago could not even compare with the precision of our digital age.  Many of the technologies we now take for granted were pioneered by the men and women of Project Mercury.  Those that followed in their wake made American pre-eminence in technology possible.

Space travel was a fascination for me long after the Mercury astronauts had made their mark in history.  I was only aware of them through later documentaries.  As a young boy in the 60’s, there was certainly the thrill of watching the spaceships blast off to space.  Yet, I was more keenly interested in the splash down when the capsule plunges into the sea on its return trip.  There was that unexplainable excitement at seeing the helicopters hover around the capsule to retrieve the astronaut and the tiny space capsule.  What seemed odd at time were the other helicopters hovering around with sharpshooters on board.  It wasn’t till later when I got interested in sharks that I learned why.

So, this is my “Shark’s Tale’ for you. And it’s not about saving the shark from extinction, who got bitten lately or about shark fin soup.  Before I tell you the rest of the story, I would like to tell you a little bit more about shark repellents first.

Between sports fishing, by-catch from longline fishing and the Chinese penchant for shark’s fin soup, mankind has devastated the world’s shark population to the point that sharks are becoming endangered.  But the fear of sharks remains with us.  It is a visceral fear.  More people die of bee stings than shark bites.   With bears or lions, the fear is also there, but tempered by the fact that we can always carry a gun, can run off in a jeep or simply hide inside a house.  With sharks the fear is magnified because there is really not much one can do in the water if the shark decides to take a bite, mostly by mistaking us for a seal or a big fish dinner. 

In North America prior to 1916, there was never a fear of sharks simply because there had been no documentation of sharks attacking human beings in temperate waters.  In 1891 Hermann Oelrichs, a banker/adventurer, even put up a reward for anyone who can document a shark attack in the temperate waters of North America.  Everything changed in 1916, detailed in Richard Fernicola’s book entitled “Twelve Days of Terror,” when, in over a span of just 12 days, four people along of the shores of New Jersey were killed by a shark, most likely a bull shark rather than a Great White (a story that inspired Peter Benchley’s book, “Jaws.”)

The idea of a shark repellent was not new.  It was suggested way back in 1895.  However, serious work on the idea started with the US Navy during World War II when airmen and sailors inevitably find themselves in shark infested waters.  The sinking of USS Indianapolis, a destroyer that carried the atomic bomb to the tiny Pacific island of Tinian, by a Japanese torpedo made that need imperative.  The mission was so secret then that no SOS signal was transmitted even as the ship sank with over a 1,000 sailors in the water.  When they were finally rescued 4 days later, only 316 remained alive, the rest were eaten by sharks.   

The Navy developed a shark repellent, called the “Shark Chaser.”  It was ineffective, yet given to sailors more for morale to allay fears of sharks rather than as a true protection.  Shark research continued after the war through the Office of Naval Research (ONR) through the 1960’s with not much success either.

Eugenie Clark, a world renowned shark expert, discovered in the 70’s that a flat fish in the Red Sea, aptly called Mose’s sole (Pardachirus marmoratus), can repel sharks.  Sharks have a powerful bite and when committed to a potential meal, would not likely stop.  When the fish is about to be bitten, the shark stops at mid bite and run’s off like a scared rabbit.  It was found later on that the flat fish has glands along its sides that secrete a venomous cocktail of peptides and steroidal compounds, presumably not meant to frighten sharks, but to repel/stun organsims as it glides along the sandy bottom of the Red Sea.  It is the Mose’s sole’s fast food drive-in! Like our quick trip to McDonald’s for a fish sandwich.

When purified, this 33 amino acid peptide repellent was called pardaxin, a term coined by Naftali Primor, an Israeli scientist funded at the time through ONR, working in one of the laboratories at New York University.  As my research team at NYU Medical Center tended to work long hours, Naftali often came by for a short visit at night, the first time to get some of our ‘extra’ mice for his pet snakes.  We talked often about sharks, snakes, Israel and Chinese food.  During this period, he was able to demonstrate pardaxin’s mechanism of action. This peptide create pore channels through the gill membrane that causes a sudden rush of sodium ions through the gills. Likely, it is perceived by the shark as an ‘unpleasant” or perhaps a painful experience.  Naftali used to go out to the fishing port in Montauk Point at the end of Long Island to remove gills from sharks caught by fishermen.  It took a day’s hard work to get enough for his research.  One night, he came back totally disgusted and exhausted.  The cooler was just open for a moment and seagulls rushed to eat all the shark gills he collected.   By then my interest in pardaxin got stimulated.  Yours truly‘s contribution to shark science was helping him dissect late into the night the opercular cells out of the killifish, Fundulus heteroclitus, to use a model system to validate the concept. Certainly beats hanging around fishing ports for shark gills and fighting off seagulls! He told me one night jokingly that Orientals are the ones with the patience for this kind of work.  I just chuckled because I knew he was right! 

My real interest was to develop a gadget, a release mechanism that would enable dispersion of pardaxin or pardaxin-like analogues around the person in water upon seeing the shark.  Great idea, if we only had enough repellent.  I did manage to develop a prototype for the device that still sits on my desk till now with many fond memories.  But, back then the cost of synthesizing the active compound and the liability issues (if the person who have the device got bitten) in a litigious society like United States made the project at that time quite daunting. 

Dr. Naftali Primor holding a restrained venomous snake( Daboia palaestinae). Its venom is being used for the production of a life saving anti venom.

Naftali eventually returned to Israel, but continues to work on venoms.  This time his interest is turned on to new exciting research on the analgesic effects of small peptides from snake venoms.  This new concept, called Zep3, is a promising technology for relief of chronic pain and treatment of various skin disorders, such as  those caused HSV viruses.  This scientific adventure started me on the path of studies on repellents, leading to the development of barnacle and insect repellents called MR08.  All these new body of work and long-term friendship started on a chance meeting at the corridor of NYU Medical Center 25 years ago.

There had been continuing work on repellents from many other scientists.  That pardaxin also behave like surfactants led to new work on molecules, like SDS (sodium dodecyl sulfate), that can ward off sharks.  SDS did not meet the Navy requirement of a non-directional surrounding cloud-type repellent at 100 parts per billion.  It would require a barrel full of SDS to ward off sharks around a single person.  It is likely useful as directional type repellent where one squirts directly on an oncoming shark.  Not likely a viable option for a swimmer in panic.  Other products include the Shark Shield, a Navy led research on bag type product with a floats where one climbed inside to avoid being detected by shark. There is also a similar concept of bubbles created around a swimmer to deter sharks. There is always of course the shark cage to hide into.  A patent was issued for the Shark Stopper, an acoustic device to ward off sharks.  Wet suits with surface patterns to mask the silhouette of a man underwater are also being developed. More promising areas of work these days involve semiochemicals, associated with decaying shark carcasses (Shark Defense Technologies) that act as small molecule messengers that modulate shark behavior.

JFK and the Mercury astronauts

Consider this scenario:  America sends a daring young astronaut, the cream of the crop of military pilots (immortalized in the book and movie entitled ‘The Right Stuff’), the best among the best, in a space ship to outer space at a cost of billions of dollars in today’s money; against all odds, the ship survives re-entry and the tiny capsule comes back to Earth, lands in the ocean; the astronaut comes out alive from the tiny space capsule, swims to be rescued and then eaten by a shark in full view of journalist and shown on live television all over the world!  This was President John F. Kennedy’s and NASA’s nightmare scenario; hence, the sharpshooters on board the helicopters.

The image of an astronaut being eaten by shark was not out of irrational fear and dark imagination.  Prior unmanned space capsules brought of out the water occasionally had embedded shark teeth on the heat shielding tiles.  Like all ships of the period, Project Mercury’s Friendship 7 came with standard military survival kit and included a shark repellent device that shoots out of the capsule ahead of splash down.

Years after my shark science with Naftali, I reluctantly went with my wife one night to attend a marketing conference in Connecticut, sponsored by Arbonne, a cosmetic company.  The after dinner speaker, to my great surprise, was Scott Carpenter, who recounted his days as a Mercury astronaut.  In his dinner speech, he related the story of NASA’s preoccupation with sharks.  As the NASA-US Navy liaison officer, astronaut Scott Carpenter took the NASA- approved shark repellent device and sent it to the Navy’s shark experts for validation testing.  Scott related that as he was preparing to embark on his first space trip, he received a letter from the shark experts essentially saying that “the electronic shark chaser device was interesting with all the lights and sounds, but appeared to be mildly effective against sharks in either the on or off positions!”  Later, after the Mercury Mission, Scott became part of the Sealab Program to develop underwater living habitats — the only austronaut who also became an aquanaut. 

As we celebrate John Glenn’s and Scott Carpenter’s 50th anniversaries of their space flights, America should be grateful that JFK’s nightmare of his astronauts being eaten by sharks never came to pass.

The most eloquent sentence in space travel to date was by Scott Carpenter before Friendship 7’s lift-off:  “God speed John Glenn”

 

Jonathan R. Matias

Poseidon Sciences Group

www.poseidonsciences.com    [email protected]

Dedicated to my children who are on their own unique adventures.

 

References:

Lazarovici  P, Primor N, Loew LM Purification and Pore Forming Activity of Two Hydrophobic Polypeptides from the Secretion of the Red Sea Moses Sole (Pardachirus marmoratus). J Biol Chem. 1986.  261:16704-167123

Primor N. Pardaxin produces sodium influx in the teleost gill-like opearcular epithelia. J exp Biol. 1983. 105:83094

Primor N. Pharyngeal cavity and the gills are the target organ for the repellent action of pardaxin in shark. Experientia. 1985. 15: 693-695

Primor N, et al.  Toxicity to fish, effect on gill ATPase and gill ultrastructural changes induced by Pardachirus secretion and its derived toxin pardaxin.  J exp Biol. 1980. 211:33-43

Sisneros JA,Nelson DR. Surfactants as chemical shark repellents: past, present and future.  Environmental Biology of Fishes. 2001.  60:117-129

http://au.news.yahoo.com/thewest/a/-/breaking/12848556/experts-work-on-wetsuit-to-outwit-sharks/

http://news.yahoo.com/john-glenn-reunites-50-old-mercury-team-022029804.html

http://www.scottcarpenter.com/sealab.htm

http://www.collectspace.com/ubb/Forum29/HTML/000375.html

http://sharkdefense.com/Repellents/repellents.html

http://the.honoluluadvertiser.com/article/2005/Aug/22/ln/FP508220336.html

http://onlineissues.wherewhenhow.com/article/Dive+Training+Shark+Repellent/866010/85272/article.html

http://www.mach25media.com/bookspacious.html

http://www.scottcarpenter.com

 
 
     
  BibTex | EndNote | RefWorks Download  
     
 

 

Thoughts on that fateful September 11th from a man who wasn’t there

     There is so much going on in science and technology every day, yet I am compelled instead to write about this singular event of the decade—September 11th.    Where were you on 9/11?  This is a most often asked question posed to any New Yorker traveling overseas or just going across the State lines.  I wish I can say how terrifying that day
was,.  How the acrid smoke and the dust filled my lungs.  How much anguish it had
been to see the Twin Towers disintegrating right before my very own eyes.   I could not say those words.  I wasn’t there.  I was 6,000 miles away, watching the events of
that fateful day unfold in the safety of a hotel lounge far away from home.

     I belong to that minority of New Yorkers who were not home on 9/11.  It was about
3 pm in Athens, Greece and I just started giving a lecture at a marine science symposium at the University of Piraeus.  One of the organizers came to the lecture room and whispered to me as I was giving my talk that a plane hit one of the Twin Towers.  And I continued on, thinking that it was just an accident.  Certainly those massive Towers can withstand any plane.  A similar accident also occurred before long ago with a plane hitting the Empire State Building and nothing catastrophic happened.  A few minutes later, he came back to tell me that a second plane hit the other Tower.  By then almost everyone in the conference room were rushing out by the coffee area, watching the events on CNN.  I rushed back to the hotel and became glued to the TV, just like the rest of the billions of human beings on that day.

Though I felt less concerned because my family lived miles away in Queenboro, that concern heightened when it was impossible to reach anyone by phone. Because air travel was restricted indefinitely, I ended up by accident in the Greek island of Ydra, spending a week there, mostly drinking wine and watching the Greek sunset along with a dozen fellow stranded Americans.  A week later, I got onboard a plane to
Singapore and from there finally to NYC.  Hardly an adventure worth recounting when someone asked where I was  on 9/11.

The World Trade Center was memorable to me, not simply as an icon of New York City. I had my wedding luncheon at Windows on the World, a restaurant on top of the Towers.  I had New Year’s celebrations there many times over the years.  I often go for a drink there and have lunch or dinner meetings with colleagues visiting New York
for the first time.  In 2000, I looked at several floors at the Twin Towers for Poseidon Sciences as home office.  Only the high expense of the lease and the longer subway ride talked me out of it. The Twin Towers was never pretty, but it exudes power and presence.  Not having enough money and being lazy to take a longer subway ride saved me from that disaster just a year later.

Not being home on that unusual day bothered me.  For inexplicable reasons, I
never came close to the ruins when I got home; the closest was 10 blocks away to see if my friend, Eugene, was fine.   And that was weeks after the event.  I can
sense the doom and gloom of downtown Manhattan as soon as I stepped out of the subway station.  I can feel the dust settling on my skin.  The distinct overpowering smell
that came from the combination of chemicals from plastics, cement, paper… and of
human bodies still burning underneath the rubble, filled my lungs.   As a
scientist, curiosity should have drawn me closer, but did not want to.  I felt I did not deserve to be there.  I did nothing.  Perhaps, I felt that pang of guilt for being
so far away then.  In fact, I had not gone to see the makeshift memorial after the attacks or even came close to the ruins to this date.

In a study published in JAMA in 2002 entitled “A Nationwide Longitudinal Study of Psychological Responses to September 11″ examined the effects of the World Trade Center attack on the national psyche.  In this article, Roxane Cohen Silver, who lead the nationwide study noted:

“This research dispels a number of myths …The effects of a major national trauma are not limited to those directly affected by it, and the degree of response cannot be predicted simply by objective measures of exposure to or loss from the trauma. This fact has not been adequately acknowledged by some mental health professionals….. We believe it is important to recognize that potentially disturbing levels of
trauma-related symptoms can be present in individuals who are not directly
exposed to a trauma, particularly when it is a massive national tragedy such as
the 9-11 attacks….Rather than seeing these symptoms as evidence as psychiatric
disorders, however, their presence is likely to represent a normal response to
an abnormal event.”

New Yorkers, in general, are very resilient mix of peoples.  Perhaps, it is the cultural
diversity that makes them less immune to major catastrophes even in their own
backyard.  The study in 2004 led by Joseph Boscarino and published in Journal
of General Hospital Psychiatry
showed that New Yorker’s use of mental health services only rose slightly after the September 11th terrorist attacks.  In fact mental health providers were prepared to provide mental heath services to the thousands of New Yorkers anticipated needing those services, but the expected need never really materialized.  Must had been the NY attitude thats hard to fathom at times!

CPT Jennifer McIntyre briefing troops before next mission in Iraq

What I think happened instead was the overwhelming need to do something.  Some as big as joining the armed forces to fight overseas or as little as helping those in need, big or small.  The disaster galvanized people to do something then as therapeutic journey to solidarity.  And, on this 10th anniversary, those who had done little, like yours truly, have some soul searching to do.  I am not sure if many feel the same way.    As a scientist working on marine science issues seemed out of place here, my work irrelevant in many ways.

Jenny enjoying Nat Sherman cigars I sent for her 'boys.' Just one of the few pleasures in the desert of Iraq.

This asymmetric warfare,  a war between a high tech nation and a low tech enemy, has a common thread repeated thousands of times in thousands of wars over the millennia– that young men (and now women too) go to war and young people die. The basic common thread is always the human element.

Though I had served my time in the army back in the Reagan years, and as I ponder this 10th anniversary of September 11th, I come to realize that I am also fighting this war (and this anger) in a different way–through my own two kids.  My daughter, Jennifer, joined the army after college and had already served two tours in

Airman Jason Matias with the Predator drones in Afghanistan

Iraq running convoys through IED infested highways in and out of Baghdad.  As an army captain, she is now again getting fresh troops ready for her third tour, this time in Afghanistan.  My son, Jason, joined the US Air Force and served his tour in Jalalabad, Afghanistan with a Predator surveillance squadron.  We, as a nation, fight wars through our children.  This is nothing new in the history of mankind, but something new and personal to me.

A Christmas card from Jason’s team in the Afghanistan airfield taken at 10,000 ft by another Predator surveilance drone

Today, as the 10thanniversary of that fateful day unfolds, perhaps it is time for me to finally come to terms with my own “post-traumatic shock,” see the Memorial and think about what I can do next for my adopted country.

Jonathan R. Matias, Science Officer

Poseidon Sciences Group

www.poseidonsciences.com

 

https://scienceblog.com/community/older/2002/C/20025747.html

http://www.scienceblog.com/community/older/2004/2/20041623.shtml

The Agony and the Ecstasy: Why science writing is like learning tango and Chinese brush painting

This is an odd title and I am stuck with it.  Worse, I am compelled to explain why this is so. 

Today, I am at a loss what to choose for my next blog entry and trying to find motivation to write about scientific topics of interest to me – malaria, repellents, arsenic poisoning, the oil spill in the Gulf, etc.  Not finding the right mood for any of those, I began to read the comments left by readers of my first two blog entries.  Then it came to, the inspiration to write, but not on any of those topics.  The inspiration is to write about the subject of writing itself. 

I asked myself many questions. How come the readers liked those articles?  What makes them read them?  Is it because I write about things that have personal interest to me?  Or, could it be the writing style?

Scientific writing to me, and I started a very long time ago, reminds me of the 1961 movie “The Agony and the Ecstasy.”  For those younger folks who regard movies before 1980 as ancient classics, the movie, adapted from Irving Stone’s novel, was about the period when Michelangelo Buonarroti struggled with Pope Julius II on the subject of the painting for the Sistine Chapel at the Vatican.  The character of Michelangelo was played by Charlton Heston and that of the Pope by Rex Harrison, two of my favorite actors from the “ancient period.”

Like the painting of the Sistine Chapel, writing my first scientific paper was indeed sheer agony.  It really was because the language and style of scientific writing are too precise, too impersonal and too alien.  There was none of the flair, the colorful, expressive words that went to writing a history essay, for example.   The scientific writing I meant refers to writing for a scientific journal, where your ‘peers” review your research data and render a judgment as to whether you are either wasting their time or have really something unique, worthy of publication in their illustrious journal.  It has a language all of its own, propagated through the scientific journals by folks that also seem to be able to write exactly the same way.  It seemed to me like these people caught a virus during graduate school that stayed dormant and then get activated only when they start writing for a scientific journal.  These are the same folks, who seemed normal and talk normal most times, but suddenly “sings a different tune’, figuratively speaking, when made to write a scientific paper.

It is never the great papers that one writes as the most memorable.  It is the ones that gave you the most agony that becomes indelibly imprinted in one’s thoughts.  Like in business, the most memorable event is usually not when you made bucket loads of money, but the agony when you lost a big chunk of dough.  My first paper, which was on the embryonic development of annual fishes, was one such event.  It was based on the work that I did with Jules Markofsky while I was an intern at the Orentreich Foundation in those early days.   That was two years of work, mostly repetitive microscopy, looking at fish eggs as they develop.  It was worse than watching grass growing in your front lawn.  It was the sort of work one gives as punishment (like KP—kitchen police- duty in the army) or for someone to go through during hazing initiation rites in a fraternity. 

Then one day, after many very long months, Jules had his Eurekamoment.  The numbers began to make sense.  For years we were puzzled by the behavior of the developing eggs of the annual fish (You have to read my first blog to make sense of this one).  One month they hibernate and in other months they didn’t.  But when you line up the data chronologically according to months, then it made sense (see the graph).  During summer months, we had no hibernation or diapause in the eggs.  But in winter months, there they were.  All the animal research facilities were in light-controlled, temperature- controlled environments– so we thought.  But we were keeping fishes not in the same animal holding areas, but in our work rooms—with one window not fully covered, open to indirect sunshine. The fish must have sensed the changing photoperiod and that was the reason for the variability in the incidence of diapause.  Shorter days in winter meant higher percentage of diapause, despite incubating the eggs at constant 25 oC.

Excited, we wrote the paper, painfully and arduously.  But the writing style was just so alien to my nature.  Months of revisions go by and finally off it went to the Journal of Experimental Biology, the premier journal at the time and still is today.  Then months passed until we received the reviewer’s comments (by snail mail, internet not invented yet).  More agony.  The most memorable comment was something that goes like this (writing from my memory), “This is the worst paper I had the great misfortune of reviewing.  However, the data are so compelling that if the authors can learn how to rewrite it in proper English, the editor should consider publishing it!” That was heartbreaking.  My only consolation was that I keep telling myself that the reviewer did not know I was only 17.   Again, more agony, more months of rewrite.  A year more and it was accepted and one more year of waiting before it finally got its turn on that coveted journal.  Two years of work and two years of writing it; then followed by the sheer ecstasy of seeing one’s name in print for the very first time.  Thank God there were no online reader comments in those days.  Otherwise I would have gone the way of the first captain of HMS Beagle (You will have to read my next blog post to understand that one).   

These last two years, I had this habit of re-reading that JEZ paper.  The reviewer was right.  The paper was atrociously written and still hard to read even now.  But, he did recognize that it was a unique explanation for a unique developmental biology of a unique group of fishes.  For those masochistic few who desire to read it, please check the first referenced paper below.  Don’t blame me if you get a headache.

Ever since then, I get a little better each year.  It was an incremental improvement, less agonizing and a little more ecstasy when a paper got printed.  Yet, it was never really satisfying. 

I always say that scientific writing is like learning tango.  No one is born knowing how to dance like that; it is something one has to learn, memorize the moves while trying to avoid your partner’s toes in the process.  Then one day, it just happens, you are swinging effortlessly in precise movements in synchrony with the Latin music and you did not step on your partner’s toes, not even once.  I never learned tango right, my dance partners did not appreciate their toes getting squashed.  But I did try; so at least I can make this analogy with some personal knowledge.

I also say it is like learning Chinese brush painting.  I know because I spent half a decade learning the process, so it deserves a little prologue here to show my qualification to make that statement.  After my short adventure in the army and while in graduate school, I needed a challenge without having to carry a backpack or rifle all day long.  Jules managed to get me a meeting with a prominent Chinese painter, Master Chung-hsiang Chao, who was already 80+ at the time.  I was told that he was the only surviving son of the last court painter of Imperial China.  The rest of the families were shot when the communists entered Beijing.  I never asked him about that episode in his early life.   And after much persuasion, he agreed to take me in as a student.  I was working full time at the Foundation during the day, taking full time graduate courses on most week nights and my thesis research on weekends.  I could only come on Thursday night. 

On our first night’s trial lesson at his home/studio on the Upper East Side, I shared his dinner and we painted together.  At the end of that session an hour later he said I can come back every Thursday night.   I had to ask, reluctantly and agonizingly, how much it will cost for him to teach me.  I dreaded the answer because this nice old man sells his painting for $20,000 a piece, me being his only student and, given my position in life then, any amount would have been beyond my means.  He smiled and said $7 every Thursday night.  I was a bit confused by the offer.  He said, “$4 for your share of the cost of dinner that I will make for us and $3 for the ink and paper you use.”  And so it was, $7 for each Thursday of those five years until he went back to Taiwan to live the remainder of his years.  This experience therefore qualifies me to make this analogy. 

The annual incidence of diapause in the annual fish, N. guentheri, maintained at 25 C under ambient photoperiod in New York City.

Mountain lily growing on top of a rock, 1980, artist: JR Matias

I say it is like Chinese brush painting (and Japanese paintings too) because like scientific writing, Chinese painting is precision and pure thought.   Each brush stroke must be pre-planned; a master painter sees the entire scene of the painting about to be played out on the stretch of rice paper all in advance.    Each stroke to create a leaf of a bamboo or a lily plant is planned in his mind, the direction of the leaf, the color of the ink, the amount of ink one needs at the tip, in the middle and at the base of the brush.  In one master stroke of the brush, in a single fluid motion, like tango, he creates the bamboo leaf, starting from the dark part of the stem, to the shades of gray of the middle leaf and the dark point of the tip. There is no room for error, unlike in Western painting or pencil sketches, where one may go back to cover up or erase a misguided stroke of the brush or pen.  It is agonizing, yet it is also pure ecstasy when one does it perfectly.  I must say though that most of those 5 years was just agony, but the short moment’s perfection was ecstasy, making it all worthwhile—just like scientific writing.

But writing this and my previous blog entries are not at all like writing a scientific paper.  Here again, something changed in me.  Writing for this blog is an entirely different animal.  Here, one needs to write about a topic in science with some accuracy, yet make it enjoyable to read for the not so scientifically inclined.  It is like a different art form; a different master gene that seems to turn on my other repressed blog science writing genes that had been in hibernation for decades in my brain cells.

This writing style happened just recently.  It started when I wrote articles for our company newsletters only last year.  But, it did seem to me that this writing style seems so natural, as if I had done it before or perhaps have read something like it before.  I had to think hard where I remember such style.  This same night, as I was writing this blog entry, it dawned on me.  The year was 1978.  That was the year when I had my first rare personal meetings with Dr. Norman Orentreich, chairman of the Orentreich Foundation, where I worked by then as a research technician.  After a brief meeting about some research topics I can barely recollect now, he gave me as a gift an autographed copy of a book, The Lives of a Cell, by Dr. Lewis Thomas, his friend.  I kept that book in my bag for a few weeks, not particularly anxious to read another book on cell biology.  But, when I opened it finally on my way to work on the A train, the book that I thought was just another text book was so engrossing that I forgot about my subway stop,  ending up in the Bronx instead of Manhattan. 

The Lives of a Cell: Notes of a Biology Watcher won a National Book Award in 1974.  Lewis Thomas was a physician, poet, scientist, essayist and educator.  He was a highly regarded scientist who became the dean of Yale Medical School, NYU School of Medicine and Memorial Sloan-Kettering Institute.  Normally a book on biology would have sent a non-science reader scurrying to find something else to read or make a science person start yawning.  But this one belonged to a different class altogether.  It was science, but it was also a personal look at what science is all about, how the bits of technical information can be woven into a readable, understandable prose about the meaning of it all, integrated into a more global understanding of biology.  It was funny at times, factual, yet so insightful.  It was also a revelation to me that science need not be boring when placed in the context that can be made understandable to a non-science reader. 

But, through my years of the typical challenges of life, I forgot all about Lewis Thomas.  I did not realize until now that it was the way Lewis Thomas wrote that made that difference.  His writing was an art form on its own.  It was not the usual agony of reading a scientific paper and it also was not like reading the latest news in the NY Times either.  It was something new, for me at least.  New enough and compelling enough to miss my subway stop and arrive late for work.   And it was worth it. 

I had since lost the autographed book.  I had lent it to so many other people and lost track who got it last.  I suppose it was not really lost because I know somebody read it, enjoyed it, probably missed a train stop too and lent it to someone else who never returned it either.  It continues to live in other people.  But, I wish I had that book with me today as I write this article because I can only recall from memory his style that changed my way of writing today.

So, excuse me for turning to this entry in Wikipedia to give you a sampling of his writing style:

I have been trying to think of the earth as a kind of organism, but it is no go. I cannot think of it this way.  It is too big, too complex, with too many working parts lacking visible connections.  The other night, driving through a hilly, wooded part of southern New England, I wondered about this. If not like an organism, what is it like, what is it most like?  Then, satisfactorily for that moment, it came to me: it is most like a single cell.

                                        from:   The Lives of a Cell, Lewis Thomas, MD

I must have subconsciously followed the same path to writing.  Or, both Lewis Thomas and I had our blog writing genes turned on at the same point in our life history.  For those who love to read science and those who do science for work, I suggest you go find a copy of the Lives of a Cell.

And for those who enjoyed my style of writing about the sciences, you can thank, as I do now, Dr. Norman Orentreich and Dr. Lewis Thomas for opening up that new world for me.

Jonathan R. Matias

Poseidon Sciences

June 27, 2010, New York, NY

Reading list

Markofsky J and Matias JR (1977). Journal of Experimental Zoology, 202:49-56.

http://en.wikipedia.org/wiki/Lewis_Thomas

www.poseidonsciences.com