Lunar eclipse, Christopher Columbus and the Teredo worm. A convergence of astronomy, history and biology.

       Native Americans (such as the Pomo, the Ge, the Serrano and Hupa), the Vikings and the Chinese all have their own myths about the lunar eclipse.  The Vikings believed that the moon is eaten by Hati, the wolf; the ancient Chinese says that the dragon ate the moon; the Serrano Indians thought that the dead spirits did it too.  There are two common themes—that something ate the moon and it takes loud noises to make these things give it up.  For the Chinese, the moon is represented by the mirror and during the lunar eclipse, millions of Chinese beat mirrors to make the dragon give back the moon. 

      My lunar eclipse experience did not involve making a lot of noise, though I can hear my teeth chattering from the cold.  After all it was after midnight in New York City and my neighbors might call the cops on me if I started beating mirrors.  I suppose New Yorkers are not ancient enough yet to develop lunar myths and, if we ever do, it is not likely to involve making loud noises.  Maybe a sudden rush to Starbucks for the new ‘moon latte’ is more like it.  I was among the perhaps 1.5 billion people on Earth that watched the lunar eclipse unfold last Tuesday, December 21, 2010.  I seem to have been the only crazy one in my neighborhood to stay through that 3 hours and 38 minutes outdoor viewing event at 30 oF.  But, I had to see it. 

       Though lunar eclipses are reasonably common, this one is particularly rare because it comes at the precise time of the solstice.  For those like me who are unfamiliar with the term, solstice (from Latin sol meaning ‘sun’ and sistere meaning ‘to stand still’) occurs when the Sun’s apparent position in the sky from an earthbound observer reaches its northernmost or southernmost extremes at which time the movement of the sun comes to a stop before reversing direction towards north or south.  I am sure you are still a bit confused by this explanation, but the story must go on ! 

       I was told that the previous eclipse occurring at the same time as the solstice was in 1638 and the next one won’t come till 2094.  Unless someone discovered Ponce de Leon’s ‘Fountain of Youth” or some scientist finally figure out how to stop aging, I don’t think I will make it to the next moon show.  Even if I did, I will probably be just as happy to be breathing and the last thing I would want is to be outdoors at 30 oF ever again watching the moon turn red. 

       As I was thinking of tropical themes to keep my mind off the morning freeze (for instance–sunset by a tropical beach, sipping margaritas at 85 oF under the coconut tree and attended to by exotic young maidens wearing a sarong), I remembered reading before about Christopher Columbus being marooned on his fourth voyage to the Caribbean, spending a year under coconut trees and warm beach of Jamaica, watching the lunar eclipse too—exactly how I would have wanted it.  His lunar encounter was at least more interesting as you will read later on—so don’t go away.  Finally getting my dose of astronomical adventures for the year, I went back inside to read more about the voyages of Columbus—and that’s because there was nothing good on TV at 4:30 AM for insomniacs like me. 

       So how the voyage of Columbus relates to the eclipse and Teredo worms?  Science and history always converge at some point, often in unpredictable ways, sometimes taking me along for the ride as well.   And, before I tell you about it, I think you need a short course on Teredo first.

The terrible Teredo, termites of the sea

Teredo worms inside an infested wood being collected in Batan, Aklan Province, Philippines. Photos by Coleen P. Sucgang.

       Anything that’s long, slimy and ugly is always termed a worm (as long as it doesn’t bite, which would automatically get the label as a snake) .  However, this doesn’t apply to shipworms, also called by mariners as the ‘termites of the sea.’  Scientifically, they belong to the genus called Teredo, the most notorious of which is Teredo navalis, originally native to the Caribbean Sea.  It is actually a clam, though looking at the pictures here, one would hardly believe that.  But it is!  And the male Teredo is one lucky stud.  There’s 1 Teredo male per 1,500 females.  Must be one very exhausted male and probably don’t live very long.  For the male Teredo, this phrase certainly applies:  “….live fast, die young and leave a beautiful corpse behind.”   Just in case you are curious where it came from, the phrase originated from the 1947 novel by Willard Mothley about juvenile delinquents (turned into a 1949 movie with Humphrey Bogart) entitled “Knock on Any Door” and also often quoted lately to describe rock and movie stars dying young from drug overdose.

       After fertilizing the eggs by the overworked (and maybe overjoyed) male Teredo, the developing eggs are protected inside the female until they develop into free swimming larvae.  Then, the little terrors meander in the high saline sea until they find fresh wood (They don’t like old wood) to settle on, unless

A Teredo worm taken out of the wood and close-up images of the tri-lobed shell and siphons. Photo credit: Coleen P. Sucgang, Poseidon Sciences.

they get eaten first by something else.  Then it starts burrowing through the wood as it grows, parallel to the grain, only turning to avoid any knot on the wood or if there is any obstruction.  By the time it reaches adulthood, it is already at least a foot long and half inch thick.  If you think this is big for a worm, its Sumatran cousin, the Giant Teredo, grows to six feet long, but lives in the muddy bottom of the sea rather than inside wood.  Unlike other typical clams, the shell covers only a tiny portion of the Teredo and used more like a drill bit to burrow a circular hole through the wood.  The tube-like home is capped at the opening of the burrow with a secreted calcareous cover, with protruding siphons that allow the animal to breathe, feed on plankton and excrete wastes.  Inside its burrow, the Teredo‘s color is pinkish white.  When removed out of its home, the color changes to a lighter blue shade in just a few minutes.

The good things about Teredo 

      Before I tell you the bad reputation of shipworms, it is only fair to describe a few good things about them.

Brunel's original design of the tunneling shield (top). A modern tunneling shield

First, the tunneling behavior of the shipworm inspired Marc Brunel, a French engineer, to devise a method, which he patented in 1818, to tunnel under the Thames River in England, the first of its kind ever built under a muddy river bed.   His technique called the “tunneling shield” made use of his observations while working on a shipyard on how the shell with fine ridges were used by the Teredo to drill through the wood while protecting itself from being crushed.  The Teredo also secretes a calcium-rich framework that coated the inside surface of the tunnel, keeping it stable and crush proof. 

Second, the cellulose that makes up the wood is not sufficiently nutritious as food and the shipworm cannot normally digest it.   It overcomes this limitation through a symbiotic relationship with bacteria, Teredinibacter turnerae, in its gills that secrete enzymes, called cellulases and nitrogenases, breaking down the cellulose and fixing nitrogen to build amino acids.  By the way, cellulases are the same enzymes, derived from fungi, used to create your stonewashed denim jeans by breaking down the cellulose on the outer surface of the cloth.  Now, it is also a major ingredient in most laundry detergents to improve cleaning efficiency.  The potential of Teredo-derived cellulases is in its future use in biofuels because it is likely more efficient than fungal cellulases in converting paper-mill cellulose waste into ethanol or methanol.

Third, Teredo worms serve an ecological purpose by degrading the wood materials that end up in the ocean.

Benedetto archtop guitar made from Sitka spruce with Teredo holes. Bottom shows close-up of the guitar with the holes made by Teredo.

Fourth, Teredo-infested Alaskan Sitka spruce used as log floats back in the 1950’s and 60’s, when transformed into a 16” traditional Benedetto archtop guitar, becomes a unique, spectacular and most expensive archtop guitar at the hefty price of US$ 52,000. 

And lastly, Teredo worms make a special Philippine delicacy called tamilok, appreciated only by natives of Palawan Island and Aklan Province in Panay Island.   It is prepared raw as a ceviche or kinilaw in the local language, with vinegar, chili peppers and onions.  Must be a scary delicacy and certainly not for the timid.  Think of your appetizer as a moving, living, half-inch thick spaghetti.  But, then again Teredo’s only known predators, the Palaweňos and the Aklanons, are probably more adventurous epicurian diners than the rest of us.  I had been in both islands, had heard about it, but never did have a chance to sample this squirming dish.  Maybe, I will try tamilok on my next trip down that way.   

Tamilok: Teredo dish.  Delicious, isn’t it?

My affair with Teredo

      One of our long drawn out research project has been to develop a nontoxic repellent against a wide variety of invertebrates.  Many years ago we have successfully developed one, called MR-08 that repels barnacles, mosquitoes, ants, flies, termites and even leeches.  This is a food grade derivative of menthol with a propylene glycol side chain that reduced the menthol smell by 95% and increased the repellent effect many fold.  So confident that it will work against Teredo, I asked our long time research collaborator, Sister Avelin Mary at Sacred Heart Marine Research Centre in India, to find areas with Teredo worms.  We soaked fresh wood with MR-08 until we were confident that it has absorbed all the way into the wood and then immersed them for a few months in Tuticorin Bay in South India.  No luck.  Teredo just ate through that wood samples as if there was nothing there.  So far, it is the only invertebrate organism that seems to have no reaction against our repellent.  

       I just gave up on MR-08 but I have a new idea for an ecofriendly, bioactive natural chemical that will prevent the Teredo from burrowing.  So, just for the moment, Teredo wins the first round! 

Now for the bad news      

       Shipworms have been a bane to ancient mariners until the advent of copper clad ships by the 18th century and modern marine coating on steel hulls.  These boring clams weakened the wooden hulls of ships to the point that they break apart in the open sea without any warning.  The Greeks and the Phoenicians certainly knew about them since 3,000 BC, lathering the hulls of their ships with wax and tar to keep them away.  The Romans used combinations of lead, tar and pitch to cover their boat. 

        Unbeknownst to Columbus, his first voyage to the Caribbean Sea in 1492 exposed his ships to the world’s most Teredo-infested waters, likely due to the higher salinity and higher seawater temperature of the Caribbean.  The ships that arrived later brought back Teredo navalis to Europe, where they can be found even as far away as the North Sea, having adapted to the cold environment.  Hundreds of ships had been lost at sea just because of Teredo worms.  These same worms caused the collapse of the wooden supports used in the dikes of Holland in 1731 causing flooding, 250 years after the first voyage of Columbus.  Only the timely replacement of the outer surfaces of the dike with stones prevented more catastrophes.

        In modern times, we have yet to escape the wrath of the Teredo.  Wharves, piers, jetties and pilings started collapsing in San Francisco Bay between 1919 and 1921, resulting in almost 20 billion dollars worth of damage in today’s money, all because of Teredo.  The mouth of the Hudson River of New Jersey and New York was once considered a ‘dead’ waterway, devoid of fish life because of the overwhelming industrial pollution since the 1930’s.  Ship captains used to sail their boats through NY harbor just to kill off shipworms and barnacles.  That’s how polluted it was.  In 1972, the US Federal Clean Water Act limited discharge into the rivers and proactively revitalized the waterways.  By the 1990’s fish had returned.  And so did the Teredo, with a vengeance.  During this period also saw the voluntary ban by the lumber industry on the use of creosote and CCA (chromated copper arsenate) to prevent further leaching of the toxic chromium and arsenic to the environment.  These wood preservatives prevented fungi from rotting the wood away and also quite good at killing off termites and shipworms as well.  These good deeds had unintended consequences—piers and piling along the Hudson River that no longer used preservatives started collapsing, hollowed through by Teredo worms.

Christopher Columbus

       After discovering the New World by accident in 1492 (He was trying to reach India and China by going across the Atlantic), Columbus had undertaken three more voyages back to the Americas, mostly in search of riches in gold and silver to recover the cost of the previous voyages.  But the Caribbean was not particularly rich in anything but warlike Caribs and Arawaks.  Though forbidden by Queen Isabela of Spain to get involved in slave trading, financial pressures from investors forced Columbus to disobey. On his second voyage, he obtained 1,200 Arawak natives captured by the Carib tribe and transported 560 of them to Spain, 200 of whom died en route.  Though the Spanish monarchs at the time disapproved of slavery, 200 of these natives were used as galley slaves nonetheless while the rest were returned back to their native lands.  Though not widely known, Columbus’ second claim to fame is to start the slave trade in the New World. 

       In the province of Cicao in Hispaniola (now Haiti and Santo Domingo), to fulfill his promise to investors to fill his ship with gold, Columbus instituted a tribute system whereby each native above 14 years of age must pay in gold every 3 months. In return each received a copper token to be worn as a necklace (not quite a fair deal).  Anyone caught without a copper token was punished by having their hands cut off.  Though it failed to yield the riches he expected, that started the gold rush (his third accomplishment, if one can call it that) to the New World that destroyed the civilizations of the Incas, the Aztecs and the many other indigenous tribes in the Americas.

        His fourth voyage was not particularly successful either.  He went to Panama upon learning from the natives about more gold to be had and a strait connecting to another ocean.  One of his ships was stranded in the river called Rio Belen and by the end of his voyage the garrison he built there was attacked; more ships damaged.  More bad luck came on his way to Hispaniola in 1503 when a storm damaged his remaining flotilla and the hulls almost breached because of the Teredo worms that infested the wood.   Most certainly, the ships would have broken apart had he went further.  No choice but to beach his vessels in St. Ann’s Bay in Jamaica.  Waiting for relief ships to come to his rescue, Columbus and his sailors had to rely on food and help from the natives who were momentarily awed by the presence of the new arrivals.  As months go by, the natives got weary of the Columbus and his men.  Angered by the occasional thievery and bad behavior of the sailors, the natives began refusing to send food to the point where his sailors wanted to invade the villages to take what they needed by force.

Map showing the four voyages of Christopher Columbus (top). Print with Columbus showing the natives that God is taking their moon away (bottom).

        Columbus thought of a better way and summoned the village chiefs for a talk at sunset on February 29, 1504.  Opening the discussion with the announcement that God was not pleased with the way the people were treating the sailors and that God would show his disapproval by taking the moon away were met with disbelief and laughter by the chiefs.    No one controlled the sky as far as the natives were concerned.  As the moon rose up in night sky, the bright full moon dimmed, lost half of its light. This loss of light continued until the moon dimmed completely, turning to amber color.  The natives began to wail, begging Columbus to beseech the Almighty to return the moon.  Frightened by the display of this ultimate celestial power, they promised to bring food once again to the sailors in return for forgiveness and giving the moon back to them.

       Columbus told the chiefs that he would consult with the Almighty in his hut for a while to see if God is in a forgiving mood, likely just checking his hour glass and waiting for the right moment.  Then Columbus returned after 48 minutes to declare that God had forgiven them and was returning the moon again.  And God promptly did.  Soon after his declaration, the lunar totality was completed and the bright moon reappeared once again.  The lunar eclipse saved Columbus and his men from starvation and saved the villagers from rampage by the sailors.

       How did Columbus know about the lunar eclipse?  He kept a copy of the Ephemeris by the great German astronomer, Regiomontanus, with him on his voyages. 

Regiomontanus and a page from the Ephemeris

      The Ephemeris (from the Greek ephemerios  meaning ‘daily’) is similar to what we consider now as the almanac.  Johannes Müller von Königsberg (6 June 1436 – 6 July 1476), more widely known by his Latin name Regiomontanus (It was fashionable at the time for famous scholars to adopt Latin names), was a mathematician, an astronomer, translator of Ptolemy’s writing and famous for his astronomical tables and instruments (sundials, astrolabes) in the 15th century.  A precocious boy, he went to the university in Leipzig at age of 11 and received his degree of ‘magister artium’ (Master of Arts) at 21 in Vienna in 1457.  His astronomical and mathematical works were the best of his time and his Ephemeris considered one of the first applications of mechanical computers.  A moon crater is even named after Regiomontanus.

        The Ephemeris was a printed table of values that gives positions of the objects in the sky at any given time using a spherical polar coordinate system of right ascension and declination.  Regiomontanus went to Vienna in 1475, a year before his death, to help Pope Sixtus IV to reform the calendar and along the way managed to finally print his Ephemeris, a copy of which was carried by Columbus two decades later on his voyages.

This story is truly a convergence of many unrelated events:

  • Teredo worms destroying Columbus’ ships
  • The total lunar eclipse happening while Columbus was stranded and his trouble with the natives
  • Regiomontanus publishing the Ephemeris and Columbus having a copy with him on his voyages.

The voyages of Columbus were full of accidental discoveries and his survival on that last voyage showed that, despite his misfortunes as a ‘get-rich quick’ fellow, he was still a one very lucky seaman in the end.

        And, the Teredo still reign as the world’s best little terror of the high seas.  Who knows, 200 years from now the Teredo may even evolve to burrow through plastics, paint and steel.  Then, we will be in real trouble!

Jonathan R. Matias, Chief Science Officer

Poseidon Sciences Group

www.poseidonsciences.com

Suggested Reading:

For interesting stories about the Teredo, please read the articles by Jerilee Wei and Kristin Cobb below:

Jerilee Wei. Teredo. The terrible shipworm that eats wood. http://hubpages.com/hub/Teredo-The-Terrible-Shipworm

Kristin Cobb, Science News, Aug. 3, 2002.  Castaway: the gripping story of a boring clam – shipworm.  http://findarticles.com/p/articles/mi_m1200/is_5_162/ai_90468391/?tag=content;col1

http://www.poseidonsciences.com/MR08_nontoxic_repellent_menthol_mosquitoes_flies_termites.pdf

http://en.wikipedia.org/wiki/Shipworm

http://en.wikipedia.org/wiki/Regiomontanus

http://en.wikipedia.org/wiki/Ephemeris

http://www.1911encyclopedia.org/Teredo

http://www.frammandearter.se/0/2english/pdf/Teredo_navalis.pdf

http://benedettoguitars.com/boutique/il-teredo/

Balanghai, Borobudur, Phoenicia and the Morgan: Reconstructing and celebrating our ancient maritime heritage

I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by,
And the wheel’s kick and the wind’s song and the white sail’s shaking,
And a grey mist on the sea’s face, and a grey dawn breaking
 

“Sea Fever” by John Masefield (English Poet Laureate, 1878-1967)

       Standing at the base of a statue in Battery Park at the southern tip of Manhattan, my eyes wide open, gazing out to see far in the horizon, I remember the long wait under the blazing July sun for the most fascinating parade I have ever yet to see.    Not a parade of men and machines.  It was a parade of the Tall Ships, fully rigged sailing vessels – schooners, brigantines, brigs and barques.   All 16 of the 25 remaining tall ships around the world, led by the USCGC Eagle, came to view, sailing past the Verrazano Narrows Bridge into NY Harbor, along with hundreds of other sail boats and ships of all sizes and shapes.   That was the 4th of July, 1976, the Bicentennial of the American Declaration of Independence and Operation Sail.   For a young immigrant like me and the rest of the 5 million watching along the Hudson River on that day, the parade was truly awe inspiring.  Even the Soviets, at the height of the Cold War, had their tall ships, Tovarishch and Kruzenshtern , joined America for this display.  For the Soviet cadets on the tall ships, this parade was their first contact with the United States and their first real understanding that “Americans were not devils…”   On that day, New York City’s struggles–race riots, economic woes—just simply faded away.

The Italian tall ship, Amerigo Vespucci, in NY Harbor, 1976

That parade got me hooked on sailing vessels, small and big, forever. 

The Morgan

      Every time I look at a sailing ship, my mind drifts to the images of that day in 1976.  The reason these memories came back again weeks ago was a NY Times article on the Charles W. Morgan, the last surviving wooden whaling vessel that once numbered over 2,700.  A small army of marine scientists, engineers, historians, graphic artists and shipwrights, aided by the latest in modern technology, are helping forensic specialists to decipher the way the ship was originally built back in 1841 in New Bedford, Massachusetts.   New Bedford was once the bustling seaport for whaling ships that supplied the world with whale oil for lamps, with baleen (the tough part of the mouth) for buggy whips and corset stays.   Later, when petroleum became the cheaper alternative to whale oil and when horse drawn carriages were made obsolete by automobiles (and no need for buggy whips), the Morgan came to rest in Mystic, Connecticut as a museum piece.  That was where I saw the Morgan a long long time ago, docked along the wharf.  Not a soul was interested enough to board her except me on that summer afternoon.

       The Morgan was not majestic like the tall ships  It was hulking, somber–looking and utilitarian.  It is an example of a bygone era popularized by the 1851 novel, Moby Dick, the story of Captain Ahab’s obsession to hunt the great white whale.  The future author, Hermann Melville, came on board as a whaler on a similar ship that same year the Morgan was built.  The novel was authentic in every detail, down to the processing of the whale meat since Melville lived through it while 18 months at sea.  Though a fantasy, the novel had some basis of truth.  Captain Ahab’s death was mostly how whalers died during the hunt and the ship being sunk by a whale did happen on an actual whaling ship, the Essex, rammed and sunk by a sperm whale.  Whaling back then is like drilling for oil in the open sea, just infinitely more dangerous, without the comforts and the safety we know today.  You can feel the danger by simply reading the cenotaphs (Greek meaning empty grave) inside the Seamen’s Bethel, the non-denominational church for the whalers of New Bedford.  The cenotaph was a tablet placed on the side walls of the church as a memorial by the families since there were no bodies to bury when the whalers died of accidents, drowning, sharks and diseases far away from home.

The whaling ship, Charles W. Morgan, docked in Mystic, CT

        For those who have no feeling for a ship, the walk on its deck is just like walking on any other decrepit ship waiting mercifully for the barnacles and shipworms to eat through the hull.  For me, as an amateur historian, it was a walk through history, not of great sea battles or great discoveries, but a walk through the history of simple, tough and courageous men of the sea.  Long before American naval power dominated the oceans, it was men on ships like the Morgan that projected the growing American economic power of the 19th century.

       What I see beyond the restoration of the Morgan is the ever increasing awareness and appreciation of maritime history not just in the United States, but also around the world.   Discoveries of near perfectly preserved trading vessels in the depths of the Black Sea, reconstructions of Greek and Roman warships built two millennia ago, the 400 year old Virginia (a sailing vessel used by American colonists), Scandinavian long boats used by the Vikings and many more.  In Italy, the Lake Nemi ships built by the Roman Emperor Caligula had bilge pumps similar in operation to our modern ones, piston pumps that pipe in hot and cold water throughout the ship (only re-invented again in the Middle Ages), ball bearings to turn statues (Thought to be first conceived by Leonardo da Vinci during the Renaissance and patented by Sven Gustaf Wingqvist in 1907)) and iron anchors that only came to use again a thousand years later.  What we thought of as modern inventions turns out to have more ancient beginnings.

 Admiral Zheng He

        During the Ming dynasty from 1405 to 1433, the 300+ ships of the Chinese Admiral Zheng He comprised 7 expeditions, that took this huge armada all the way to India, Africa and Saudi Arabia.    Extensive written accounts of the voyages tell of 5-masted ships, 200 to 400 feet long, carrying 28,000 men, traversing the South China Sea to the Indian Ocean reaching as far away as Madagascar in Africa and up the Red Sea to Jedda.  The expeditions sought a rival emperor who fled (considered the longest maritime manhunt in history), suppress pirates in the South China Sea,

Comparison of the size of Admiral Zheng He's treasure ship and the ship used during the voyage of Christopher Columbus

explore new worlds, establish trading colonies and project the power of the Chinese Empire.  The Admiral fought a land war against the Kingdom of Kotte in Ceylon and brought back emissaries from 30 states to pay respect to the Emperor.  As a Muslim from Yunnan Province, Zheng He also expanded the range of Chinese Muslim influence in Asia, with contemporary scholars crediting Zheng He with the Islamic beginnings in Indonesia and Malaya.  Life-size replicas of such magnificent ships are yet to made and we can only wonder how such ancient leviathans managed to make this trek multiple times. 

 Borobudur, Phoenicia and Philip Beale

      While many working replicas of ancient ships continue to be made and sailed, perhaps the more recent expeditions on the Borobudur and Phoenicia by Philip Beale’s team are great examples of the passion for high seas adventure. 

       Borobudur Temple is considered the world’s largest Hindu stupa (Sanskrit meaning “heap”), a mound-like structure considered holy because of the presence of Buddhist relics.  Located in the island of Java in Indonesia, Borobudur was built during the 8th century and considered the inspiration for similar structures found in Cambodia’s Anchor Wat centuries later.  The intricate artwork within this vast spiritual complex includes over 1460 reliefs on its wall, 11 of which described the maritime events of the time.  Of these 11, five are reliefs of a previously unknown ship design, later called the Borobudur ships.  The saga describes Indonesian seafarers on ships laden with spices venturing far out beyond the archipelago to the Indian Ocean and to Africa centuries before Borobudur was built.  Pliny, the Roman historian of the 1st century AD, described seafarers from the East coming to Africa on ships and modern historians agree that Indonesians did venture as far as Africa to establish trading colonies. 

      Philip Beale, an Englishman who became captivated with this story, joined the ranks of inspired modern mariners who took it upon themselves to build the exact replica of the ship.  The ship, fitted with outriggers as shown in the carving, was built the same way ships were constructed during the period, with Indonesian hardwood and wooden pegs instead of nails.   When finally built, the ship captain, Alan Campbell, recalls,

“Some ships, when you first see them, you’re not sure which end is the front and which is the back.  When I first saw a picture of this ship, I wasn’t sure which end was the top.” Yet when she cuts through the water, the Borobudur possesses an undeniable majesty. “

His Borobudur Ship Expeditions had taken the exact replica of the ship through the Indian Ocean and to Africa in 2004, proving that ancient Indonesian mariners could have accomplished this feat with the Borobudur ships in the past.   

       Beale’s passion did not end with Borobudur. The next obsession was to build a Phoenician ship to validate the ancient story of Phoenicians circumnavigating Africa 3,000 years ago.  Phoenicia (also referred to in Latin as Punic) comprises city states along the coasts of the Mediterranean, from North Africa and extending to Syria today.  Its power rested on commerce due to its vast fleet that roamed the Mediterranean basin at will.  Because of its naval might and trading power, Phoenician alphabet was adopted by the early Greeks, then by the Etruscans, the Romans and eventually to become part of our modern alphabet.  Herodotus, the Greek historian, wrote the story of King Necho II of Egypt who commissioned the Phoenicians in 600 BC to circumnavigate Africa, previously considered an impossible task.  Like all mariners, Phoenician mariners rose to the challenge, built the ship in Egypt, sailed it through the Red Sea and eventually returned via the Mediterranean three years later.

      Could the Phoenicians have really accomplished it?  Since written records were made in papyrus that disintegrated with age, the only way to settle this question is to build a Phoenician ship and sail it around Africa.  After assembling his team of ship builders and marine archaeologists in Syria, Philip Beale built a replica based on archaeological artifacts, shipwrecks and descriptions available in the historical records.  Last October, the ship, Phoenicia, circumnavigated Africa, returning to dry dock in Syria last October, 2010, finally proving that it can certainly be one.

On the Galleon Trade

       This is a great year for ship reconstructions and expeditions.  The replica of the galleon, Andalucia, was made to highlight the celebration of the Galleon Trade between Manila and Acapulco, a period of over 200 years when goods from Asia came to the New World, not via the more famous Silk Route, but by ships built in the then Spanish colony called the Philippines.  The replica of the Andalucia, though not the life size working model, was thought to be the first ship that traversed the entire world.  Besides bringing the riches of Asia and plundered wealth of the colonies to the West, the Galleon Trade brought Western goods and historical connections between people over those two centuries.  Even now Mexican coastal families carry the last names of native Filipino seafarers that likely had jumped shipped (perhaps, becoming the first Asian illegal aliens in Mexico).  There are coastal communities in Mexico where the favorite alcoholic drink is called tuba, derived from fermented sap of coconuts, popular only in the Philippines.  Likewise, Filipinos came to like the Mexican champurado (chocolate rice porridge) and tamales.

       On my first visit to the island of Panay in the Philippines in 1994, I was struck by how denuded the mountains were and was told that the island only had less than 5% remaining of its virgin forest cover.  My first thought was that more recent uncontrolled harvesting of wood for timber and firewood were the root causes of the deforestation.  Only after talking with a local historian that I came to know the center of shipbuilding was in the old city of Iloilo in Panay because of its natural harbor and thick forests.  The Spanish colonial government had consumed all the big hardwood trees 200 years earlier to build the ships that served the Galleon Trade.

 My obsession with the balanghai

      Having lived and worked in New York City all my adult life, I often dreamed of living in a tropical island, a house by the sea, with coconut palms and beautiful sunsets.  My wife and I visited many islands in SE Asia and did chose the island of Panay and the town of Miag-ao, where I continued research on totally new directions—barnacles, spiny lobsters, endangered clams, eels and tropical abalone.  What captivated me on my first visit to Miag-ao was the view of the small fishing boats going out to sea at night with lanterns and the hundred or so boats racing to market in the early morning to sell the night’s harvest of fish.  It’s the delight of seeing the same boats on a different season, slowly moving parallel to the beach, with kerosene lamps lit up, catching squid; of local tales of a shark that once roamed the bay, keeping the fishermen from venturing out to sea, of wild tales of mysticisms and night creatures of ancient legends.  There were many reasons to be there, but it was the sight of fishing boats that kept me often by the sea .

Views of Miag-ao. Villagers helping pull fishing nets towards the shore at sunset. Fishing boats sailing towards the shore during the Salakayan Festival. Photo: JR Matias

       During the five year sojourn in Miag-ao, I also learned about the local customs, the local stories, the issues of being foreign having lived in another island in my youth, speaking a different language altogether.   I also learned about Maragtas, a tale written by a local islander, Pedro Alcantara Monteclaro,  a revolutionary figure during the Philippine Revolution against Spain.  Maragtas tells the story of the Ten Datus of Borneo, escaping a harsh ruler on their long boats with their families, searching for a new home in distant lands.  It tells of them landing in the island of Aninipay (now Panay) within the shadow of the mystical Mt. Madia-as, the negotiations with the local Negrito tribesmen for the datus to occupy the lowlands and the Negritos the highlands.   It was a tale of maritime adventure, of love stories and of many things.  But, I was most captivated by the vision of the boat called the barangay or balangay that the datus used for their escape.

       The word barangay refers not only to the boat, but also the village.  Antonio Pigafetta, a Venetian scholar who accompanied Magellan in his voyage to circumnavigate the world, called these boats by the Europeanized version of balanghai.   Pigafetta was one of the 18 survivors that returned to Spain on the ship Victoria out of the original 241 that constituted Magellan’s 5-ship flotilla.  The biggest balanghai, measuring 25 meters, can carry the entire village.  They are also war canoes used to raid neighboring islands.   Much of that maritime history was lost when the Spanish Conquistadors came, after Ferdinand Magellan landed in 1521 (and killed in battle with a local datu, Lapu-lapu) in the nearby island of Mactan.   

       The later conquest of the islands was made possible not by Spanish warships.  They were too big, too slow and the draft too deep to navigate close to the coast to make effective use of their cannons.  The ships of the Conquistadors were mostly anchored in the natural harbors of Cebu or Iloilo from where they boarded hundreds of balanghais, referred by the Spanish as caracoa, manned mostly by native allies to attack the next island.   After consolidating their conquest, the colonial government banned the building of balanghai, preventing interisland communication and trade except through permission of the colonial government.  The control was so total that even the first letters of the adopted Spanish last names were given according to the island of birth, thus enabling the government to track origins of people.  The natives were then redirected instead to build churches, forts and serve in the mines and plantations.  Boat building skills were lost, except in the unconquered territories of the southern islands where the same boat building tradition continues to this day in remote islands.

       In pre-colonial times, the city of Butuan in the island of Mindanao was the center of commerce, with ships coming from the Sri-Vijayan Empire of Java and from China and India.  In the late 1970’s, nine balanghais were found purely by accident, buried and preserved for centuries in the mud , the largest estimated at 25 meters.    While 6 boats remained buried in their original waterlogged condition, radiocarbon dating placed one of the three excavated balanghai to year 320, the second in 990 and the third in 1250.  These are the oldest, pre-colonial wooden boats found in SE Asia thus far.

The working replica of the balanghai in Batan, Aklan. Photo by CP Sucgang.

        On December 13, 2010 the replica of a balanghai, built by Arturo Valdez and his team of former Everest mountaineers , completed its 14,000 km odyssey, through the South China Sea, taking this boat to Brunei, Cambodia, Malaysia, Indonesia and Singapore, finally berthing on its home base in Manila.  Like the Phoenicia and Borobudur expeditions, the journey of the balanghai also proved the ancient accounts that such boats had roamed throughout the archipelagic countries of South East Asia and perhaps beyond. 

        The balanghai is especially interesting to me because I had the same passion that began in 1997, yet was never fulfilled.  I visited the National Museum to see one of the balanghais on display and discussed with Rey Santiago, the senior archaeologist, on the possibility of building such a working replica in the future.  What developed in 1998 was a concept to build such an exact replica to sail around South East Asia in the same way that Art Valdez was able to successfully accomplish a decade later.   Finding the enormous hardwood tress needed for the planks and the carvers with the abilities to build one were daunting tasks.  And, new challenges of the times distracted me from chasing that dream.

      A Nova Pacific newsletter I wrote in 1998 while I was in Miag-ao discussed the balanghai in more detail and thought the excerpt below from that publication might be illuminating:

       Folktales handed down from generations tell of entire communities migrating from distant lands to settle in our islands aboard a legendary ship called the balanghai.  And, upon landing in their new found land, the voyagers continued to carry on the traditions of their homeland.  The legendary adventure of the ten Bornean datus, led by Datu Puti, and their settlement of Aninipay (now called Panay Island) in the Visayas spoke well of our ancient maritime heritage..  The advent of the Spanish era in the 16th century destroyed much of our seafaring legacy and, with its loss, much of our cultural identity as a people.

What is a Balanghai? 

      The term balanghai came originally from the Italian spelling of Antonio Pigafetta’s 16th century writings about the barangay.  What we really knew about the balanghai came from Francisco  Ignacio Alcina’s 1668 manuscript which described life in the archipelago for the Spanish King.  He described the balanghai as a 15 meter long plank built wooden boat propelled through the sea with a square sail on a tripod mast.  Its rowers, numbering 10 to 20 men, sit on platforms along the outriggers (2 to 3 rows on each side).  These ancient mariners paddled from “sunrise to sunset” at high speeds in unison to the songs and chants about heroes and their deeds.  Aboard the balanghai, the most important person was not the datu but the crier or singer whose songs, not drums like in Chinese or Japanese boats, set the rhythm of the rowers.  When traveling before the wind, the balanghai was said to go at a speed of 12 to 15 knots compared to the galleon’s 5 to 6.

     The balanghai is not just a ship for long voyages.  It is also a warship, highly maneuverable, versatile vessel best

Balanghai as a war canoe. Watercolor rendering from a print by Noe Trayvilla, artist, Miagao. In the JR Matias collection.

suited to the shallow waters of the archipelago.  Other than ancient writings and folk tales, there was no real proof of the balanghai’s existence until 1976, when by sheer luck, a Butuan City Engineer named Proceso S. Gonzales, unearthed planks of an ancient boat buried in the mud.  The National Museum dispatched archaeologists to the site and discovered a national treasure of several balanghais, which when carbon dated ranged in age from the 4th to the 13th centuries. 

      These ancient boats, whose construction remained unknown for over a thousand years, lay buried under the mud in Butuan City. What the archaeologists had unearthed corroborated much of Alcina’s detailed descriptions of the balanghai.  Having been a master shipwright himself before coming to the Philippines and have built such vessels during his travel through the Visayan islands, Alcina’s writings of the balanghai had the details only an expert could have provided.  The construction is unlike our more modern technique of boat-building where the keel and the ribs are laid first and from which the planks are fastened with nails or spikes.  The construction of the balanghai involved building the planks first and then fastening the ‘ribs’ after the ship has taken shape.  This same technique was employed in the building of Viking ships.  Each plank is carved expertly from a tree with an ax and fitted edge to edge perfectly with wooden pegs–a no mean feat for a boat the size of a balanghai.  Caulking was made up of fibers and resins.  Alcina’s description of the balanghai was indeed proven true by the archaeological findings in Butuan.

What makes the balanghai so important?

     The balanghai, with its various names, the biniday or barangay, is not just an ancient ship. It is the term from which our basic sociopolitical unit was derived.  Before the Spanish era, it refers to a community or settlement led by a monarchical chieftain, the datu, chosen for his wisdom and valor.  The renaming of this political unit into a barrio during the American occupation has symbolically subverted the Filipino psyche from an independent society into that of a conquered one.  In 1974, pursuant to Presidential Decree No. 557, the term barangay used to describe our community was again adapted as a reaffirmation of our national identity.

    Just like the Viking ships of Scandinavia, our balanghai is a symbol of the maritime heritage of our civilization that links us with our Southeast Asian neighbors. It can be a common link between the islands and its diverse cultures; a means of creating a national unity.

     For centuries, our balanghai had been a myth. To most Filipinos, the balanghai remains a mere symbol and few understand its true value.  To transform the myth and the symbol into a recognizable truth one must therefore bring the symbol into reality. To draw the balanghai from the abstract into the realm of the senses, one must bring the true balanghai to life.

From: JR Matias, Nova Pacific newsletter, 1998

The oceans as the ultimate freeway

       Seafaring legacies are aplenty.  Visit any nation that has a coastline, talk to any of the older villagers living by the sea and you’ll see what I mean.  Seafarers are among the most vibrant and adventurous people I know.  When they leave the comforting sight of land, dangers lurk in every wave, every change in the weather.  That has always been so for millennia and have not changed much even with our modern technology.  For mariners, beyond the national territorial limits, the ocean is like an autobahn, a freeway without lanes and without borders.  Unlike the Silk Route, where a traveler needs permission to pass through kingdoms and fiefdoms, the ocean was free, unfettered access.  And for thousands of years, it was the communication highway, the ocean the equivalent of our modern Internet.

 Traditions

      The maritime tradition of the Philippine Islands continues today, though most of this tradition now lay in more distant oceans under many different flags.  There are about 100 maritime academies in the islands, sending 230,000 seamen to man the world’s tankers, bulk carriers and cruise ships.  Of the 1 million seamen worldwide, 25% of them are Philippine seafarers.  So, it is not so surprising that every time a ship is hijacked off the Somali coast, invariably there would be a number of Filipino crewmembers taken hostage, more than any nationality.  There was a time in 2008 when one Filipino seaman was captured on foreign ships every 6 hours.

      Why so many Filipino seamen?  It can’t simply be explained by economic terms when there are so many more island nations with similar economies, yet with little participation in the maritime industry.  Perhaps, the Philippine psyche is still tied with the sea despite the 400-year ban that Spain imposed on its former conquered territories.  The thousands of years of riding the balanghai cannot be erased by such a brief interlude; it was just simply lying dormant, biding time to re-express once again.

Or, perhaps it is simply in the blood !

Jonathan R. Matias

Chief Science Officer

Poseidon Sciences Group

New York, NY USA

www.poseidonsciences.com

Additional reading:

http://www.balangay-voyage.com/index.php

http://agiledeals.com/2009/05/butuan-and-balanghai-a-journey-through-time/

http://en.wikipedia.org/wiki/Nemi_ships

http://maritimeasia.ws/topic/shiptypes.html

http://www.time.com/time/magazine/article/0,9171,480337,00.html

http://www.borobudurshipexpedition.com/design-outline.htm

http://www.phoenicia.org.uk/discovering-theship.htm

http://en.wikipedia.org/wiki/Zheng_He

About the whaling ship, the Morgan

http://www.nytimes.com/2010/08/17/science/17ship.html

On Frank Braynard, founder of OPSail and maritime historian

http://www.signonsandiego.com/uniontrib/20071217/news_1m17braynard.html

Animation—from an ancient art form to high science. Cryptic images from Paleolithic cave drawings to Shrek, the movie.

     I thought to tackle a much lighter topic than aging, cancer, toxic spills and malaria for a change of pace, especially since Christmas is getting closer and need some happier thoughts.  Today’s blog will have less to do with biology and more into a topic of great personal interest since I was 4 years old.  You may ask, “What prompted this all of a sudden?”  I’ll tell ya.  Blame it on Shrek.

     Animation, as we know today as motion picture or video, is an increasingly sophisticated art form.  It is the method of creating optical illusion of motion through a rapid display of images in two or three dimensions.  This illusion is created in our mind because of the phenomenon called “persistence of vision” in which the retina of our eye retains an afterimage for 1/25th of a second.   It is for this reason that modern films run at 24 frames per second; at 16 frames per second, the images flash and not pleasing.  We can still see motion at 10 frames per second, akin to watching someone flip a book in front you.  It is the retina that does this all on its own, not the brain as once thought; hence, the term “iconic memory “ that has been debunked by physiologists as early as 1912.  Even the concept of persistence of vision dates back to the Roman poet and philosopher, Titus Lucretius Carus (ca. 99 -55 BC), from his only known work, an epic poem called “On the Nature of the Universe.” 

     It is also a perennial surprise to me that the things we now know often have ancient beginnings.  Cave dwellers of the Upper Paleolithic era (40,000-10,000 BC) began creating images of animals in motion by superimposing multiple legs.  Without any means of making the images move, the drawing is not animation in the true sense of the word, yet they conveyed the human need to display motion in art.  Hypotheses abound on the meanings of these cave paintings, ranging from pre-historic star charts (Dr. Michael Rappenglueck, University of Munich), spiritual trances invoking the power of nature (David Lewis-Williams), imagery of past hunting successes and rituals to improve hunting success.  Considering the thousands of images painted on the walls of Lascaux alone, I think that they simply have a lot of free time and like to doodle whenever they can.  Try this on your teenagers—don’t pay the Internet and cable bills, take their mobile phone away and keep them in the house.  The artistic ones will be doodling all day, while the rest with no talent will find other mischief or sneak out to go shopping, which is sort like “hunting and gathering” the modern way.   In fact, these ancient cave dwelling artists were so good that the painting called the “The Crossed Bison” showed perspective drawings not seen in art until the Renaissance, about 15th century AD.

     In 180 AD, the Chinese invented the zoetrope.  It’s ok if you don’t know what it is.  I did not know what it meant either until I looked it up (from Greek zoe meaning life and tropos meaning turn; the “wheel of life”).   A zoetrope is a cylindrical device with vertical slits. Below the slits, inside the cylinder is a series of drawings or pictures.  When you turn the cylinder while looking though the slits, the perception of motion is created.  It must had been a hit in 180 AD, just like getting your first Polaroid  instant camera in 1948 (called the Land camera from its inventor, Edwin H. Land, who also designed the optics for the Lockheed U-2 spy plane, later shot down by the Soviets –Sorry, can’t resist the trivia).  

     Zooming on to modern times and for my fellow New York  ‘straphangers’ who may not know, there is a linear zoetrope aptly called “Masstransiscope” built in 1980 on the subway platform at Myrtle Avenue in Brooklyn.  The Masstransiscope (Sounds appropriate, doesn’t it?) consists of 228 slits set against a linear wall, behind each slit a hand painted mural is illuminated from behind.  As the train runs past the station, the riders, nicknamed straphangers for holding on to the leather straps (not leather anymore, but stainless steel now) hanging from the ceiling of the train, see  the images as a motion picture. 

     Stop-motion cinematography was developed in the 19th century and the first one was attributed to George Melies, who discovered it by accident when his camera broke down while photographing a passing bus.  By the time he restarted the film, a hearse was passing by after the bus.  Later, he discovered that his images transformed the bus into a hearse. And so began the motion picture industry, hearse notwithstanding.

     Animated films of the 20th century are a bit more complicated and involved hand drawing of each frame, the second frame slightly different from the previous ones, each drawing is traced or copied into acetate sheets called “cels,” colored and photographed one by one to create the motion picture.  The traditional cel animation was replaced in the 21st century with scanning and computer drawings, integrated with computer software.  Despite such technological advances, the art form of traditional cel animation is preserved to this day and the input of the animators remained as it was 70 years ago.  The technology has changed but the art remains blended into the new ways of creating the images.

    I fell in love with animation as a child living in a village far away from the city in the Philippine island of Luzon.  That was in the very early 60’s when television had yet to reach the village.  It was a time when a phone was a rare item and even a car passing through the village was a special event, a cause for celebration among the children who would chase the car as it sped out; must have been the same inclination that dogs have for doing the same for no reason at all.   As a 4-year old, my only recollection of that period was the movie van coming to the village every 6 months after the rainy season, a much awaited event for the young and old alike.  All the kids sit in front on the grounds of a dusty clearing at dusk, watching the driver/movie technician/marketing agent unfurl the wide screen attached to the outside of the van and get the movie projector going.  It was the only time I can remember as a kid to be in a hurry for darkness to come.

  The first 30 minutes was a promotion of Darigold powdered milk.  Back then in the village milk cames from some rare cows, water buffalos and nursing mothers.  Darigold, a brand since 1918, is a farming cooperative of over 500 dairy farmers in the United States.  Then, there was the Carnation evaporated milk promotion movie.  The company, founded in 1899 by Eldridge Amos Stuart, was famous for its for its slogan of the milk coming from “Contented Cows.”  The milk products and the contented cows were irrelevant to me; all the kids I knew hated drinking milk or had no chance to get any, anyway.  I did not even know what ‘contented’ means; thought it was something to do with bowel movement.  I was contentedly waiting for the animated cartoons of Mickey Mouse and Mighty Mouse to start.   Walt Disney’s Fantasia and Snow White and the Seven Dwarfs were just pure works of wonder to me.   Life was simpler then, or perhaps, life was always simpler for all 4 year olds anywhere on Planet Earth.

     Half a century later, animation remains an interest, though vicariously enjoyed in the guise of taking my kids to the movies.    The high tech changes in animation, though visually appealing, seemed missing something.  The only enduring animation that made its recent mark on me was Shrek, but only the first movie in 2001.  (If you have not seen it, maybe you should go out of the cave and stop making drawings on the wall !) It was a different genre all of a sudden; a bit brash, irreverent, yet reminded me of the same qualities of the old animation films.  Just like the ancient cave dwellers, each generation leaves a mark for posterity within the limits of their own technology.  Our generation is leaving so much mark that we hardly notice.  Perhaps, it is the generations a hundred years from now who will decide the defining marks of our generation.

     Shrek was an unconventional movie on its own right, but something else that struck me as unusual.  I could not pin point what it was until I watched it alone, undistracted, early in the morning while I was taking a break from writing a dreary piece on malaria.  And, there it was!  An image of not so long ago, taking me back to the old country, an image of the Philippine flag embedded within the narrative of Shrek.  I only remembered it because of the recent diplomatic flap at the US State Department when the Philippine flag was displayed incorrectly, with the side signifying the country is at war.

   To make this observation plausible, I think it is best to give a quick primer on the Philippine flag.  This tri-color flag, whose colors were influenced by the Cuban Revolution, was first raised during the proclamation of Independence from Spain by the nascent Philippine Revolutionary government in June 12, 1898.  Within the white triangle is the sun, with 8 radiating rays symbolizing the first 8 provinces that revolted against Spain, a concept similar to the Betsy Ross flag of the American Revolution with the stars representing the first 13 colonies that fought the British.   In the Philippine flag, the three stars represent the three main geographic divisions of the archipelago, the red color symbolizing the blood of the revolutionaries who signed their membership to the Katipunan, a Masonic secret society, in blood; and, the blue representing peace.   

    Among all national flags, the Philippine flag is unique because it can show a state of war by simply flying the red field on top or on the left of the observer when mounted vertically.  In times of peace, the blue side is on top.  The war flag was first flown in 1899 during the Philippine-American War, then again during World War II when American and Filipino troops fought and died side by side against the Japanese and during the EDSA Revolution that toppled the dictator, Ferdinand Marcos, from power.  The recent diplomatic issue of the United States not being familiar with the protocol by presenting the flag on its war stance during the ASEAN summit ceremony in New York City attended by President Barack Obama last September 26th  was an understandable faux pax.   

Now, take this idea with grain of salt…

     Look closely at the sun and 8 rays in the Philippine flag and then compare with the animation frame in Shrek.  The portion of the narrative was when Fiona retired into the cave to hide from the evening darkness, Shrek and Donkey was talking about the starry night by the fireside.  There were eight boulders that make up the fire pit and in one frame eight rays where radiating from the fire.  In this animation frame are both characters lying down looking at the stars, with the shadows made by the rocks framing a likeness to the Philippine flag’s emblem of the sun and 8 rays.  If you watch the previous scenes closely, variations of similar images appeared in different frames making this less of a chance imagery, but a more thoughful, conscious action.

     It could very well be just accidental and I might be simply reading too much out of this.  And, I will be the first to admit that this might very well be just a happy coincidence.  Or, I need more sleep and less coffee. 

But, consider this:

     Dreamworks SKG (the creator of Shrek), like all of the major US animated movie companies (Disney, Marvel, Hanna Barbera, Cartoon Network, Warner Brothers) all outsource their animation overseas.  Over 90% of such animation companies are located in Asia.  The Philippines is the dominant outsourcing location for 2D animation because for the last three decades the US animation industry has been using Filipino artists.  This is because of a closer understanding by Filipinos of the American mindset, the numerous pools of talent and the lower cost compared to US animators.   

     That those embedded Philippine emblems are attempts to merge the creative talent with national pride in a cryptic way seems plausible considering possible Filipino artist involvement in the creative process of Shrek’s animation. 

     This is just a hypothesis and waiting for someone to prove or disprove it.  Maybe Dreamworks can tell me later.

     Nevertheless, it is heartwarming to know that some nationalistic pride still shines out of all of this dreary work.  Who knows, maybe since the animation business is moving in the direction of India and China too, perhaps there will be more artistic, cryptic and irreverent images embedded within future movies as well.  Only Indian or Chinese descendants may likely spot them next time. 

Maybe go get your Chinese friend to check out “Kung Fu Panda” for hidden imagery.

Jonathan R. Matias

Poseidon Sciences Group

New York, NY

www.poseidonsciences.com

Additional reading:

http://en.wikipedia.org/wiki/Persistence_of_vision

http://en.wikipedia.org/wiki/Animation

http://en.wikipedia.org/wiki/Lascaux

http://en.wikipedia.org/wiki/Zoetrope

http://en.wikipedia.org/wiki/Flag_of_the_Philippines

http://www.imdb.com/title/tt0126029/synopsis

On outsourcing and insourcing in the animation industry

http://www.druid.dk/conferences/summer2004/papers/ds2004-92.pdf

The fight against cancer needs to be an asymmetric warfare; reflections on the death of a friend

A black man was killed a few days ago.  No, it’s not gang violence.  It’s neither drug related nor a party in the ‘housing projects’ gone out of hand.  It’s not an accidental shooting or from a robbery gone astray.  Nor was it even a traffic accident.  Most people would have said that he had died or simply passed away, but I say he was killed.  The word ‘dying’ seems to sound so natural, so passive, as if his death was an expected, common place event.  He was killed by something even more sinister, more insidious, more violent and even more heartbreaking.  He was killed by his own cells, his very own DNA, aberrant as it might be, but it is his own nonetheless.  He was killed by prostate cancer.  And he was my friend.  His name: Dr. Lloyd A. Williams, neurosurgeon.

I meant to write about cancer research much later on, but his death brings this subject much closer to home.  He was an unassuming man for a neurosurgeon, mild-mannered, soft-spoken, cultured and full of wonderful dreams.  On warm summer’s evenings, he would come by my home for a short visit and we would sit near the backyard fish pond watching Japanese carps swim by.   Surrounded by tall flowering night jasmines and bamboo trees, he would relax finally on those rare days when he was not working as the neurosurgeon at the two local hospitals.  We talked about science, his love of philosophy, the old books he has been collecting and his dreams of writing poetry when he can finally relax from the miseries of doing surgery 6 days a week.  He was ambitious, holding two jobs to generate enough wealth to fulfill his dreams.  An immigrant from Jamaica finally attaining the great American dream—a grand home, investment properties, a wife, a kid.  He talked about his parents and how their old dreams for him finally materializing.  I told him that there is so much coincidence here; a Jamaican immigrant living in Jamaica Estates, NY, drinking Jamaican rum.  He just laughed.  We instantly found some common interests the first time we met and I had enjoyed those rare visits year after year.  The pond was our “happy place” to unwind, feel the breeze, and settle for a spell, just enjoying a cognac or two by the side of a little campfire.

In the summer of 2009, he looked more subdued than usual.  He told me that he has inoperable late stage adenocarcinoma of the prostate that has already metastasized to the liver and pelvic bone.  I did not know what to say, but the first thing that entered my mind was how can an M.D. miss the early warning signs and let cancer get this far.  The second thought was the misery I had seen when another person I knew long ago died from metastatic lung cancer.  Then, I thought of my father-in-law who died from prostate cancer too.  The pain and suffering for both him and his family were about to come and I can’t do anything about it at all.

He was an energetic, seemingly healthy man.  The cancer was not detectable until the pain started.  Statistics say that 1 out of 6 men will get prostate cancer and African-Americans have more than twice as much probability of getting it than the rest of the male population in the United States.  I knew all of that.  I did research on prostate cancer for a few years, although in a rat model of adenocarcinoma.  I have followed the scientific literature over the years.  But, what can I do for him?

US mortality rate for prostate cancer (2003-2007) according to ethnicity. Data derived from: SEER,National Cancer Institute, NIH

There’s hardly anything out there for late stage prostate adenocarcinoma.  But, there is always hope and there is the never ending stream of scientific papers each week about cancer.  Perhaps, there might be some clue, maybe too novel as yet, that might give us some rays of hope.  So, we agreed that I will read the literature more closely and will mail him a copy of each paper that I thought would be useful.  And so started my odyssey of reading prostate cancer papers each week.   It became almost a ritual, with my secretary printing the latest articles of the week and mailing him a copy, a weekly routine that has gone on for over a year.

I had not seen him since that summer evening, though we talked on the phone.  He was fighting the cancer, traveling to different hospitals, more surgeries, more pain and more hope.   He could barely read the articles I sent him.  But, he fought this disease with such overwhelming tenacity like a gladiator in combat.  He gave a good fight.

Last Friday, October 1st, I felt the end was near.  I thought of going to his home anyway, just half a mile away from mine.  But I did not.  He died at 5:00 PM that same day.  I have the same guilty feelings that many of us lucky enough not to have cancer–yet.  They are the same emotions felt by those who survived a natural disaster or a soldier surviving a firefight in some godforsaken corner of the world while other friends did not.

Having read, scanned, and browsed all of the recent literature on prostate cancer till I was worn out seemed like a hopeless exercise in futility now.  Yes, so much is known about the biology of cancer.  Much progress has been made.  But the progress made were not big leaps forward, not even mini-jumps.  They are all micro-steps, each of those steps cost a lot, not in terms of just money, but intellectual energy because cancer researchers are among the most passionate, determined scientists I know.

To give you an idea how much has been written about it; just go search ‘prostate cancer’ at PubMed, a database comprising over 20 million citations of medical literature by the US National Library of Medicine, National Institute of Health.  From Sept. 1, 2010 till October 1, 2010 there were 400+ scientific papers on the subject in this short span of time.  The very first paper in that database was by Dr. C. E. Liesching, printed in 1894 in the British Medical Journal.  And, 768 more followed by the end of the year — 89,105 scientific papers in all from 1894 till Oct.1, 2010.  That’s just what has been indexed, not counting articles and other journals not included in PubMed.  If you think that’s a lot on just one subject, here’s another one for you.  Breast cancer papers was included in PubMed starting from the 1868 article by Dr. Thomas Bryant, also in the British Medical Journal, to a total of 219,395 papers until October 1.  Three times more papers on breasts than on prostates.  Can’t say I blame the researchers, who predominantly were mostly male.  Even if I just take an arbitrary average length of each paper as 3 pages each, this translates to 925,500 pages when you combine the two topics, almost a million pages of ideas.

Then, you may ask, “Where are we now after almost 1 million pages of print and untold billions (or trillions of dollars)?” The answer would be different for a scientist and for a lay person.  From the scientific point of view, we have made great strides in the treatments, prevention, the understanding of the mechanisms from the sub-molecular, molecular, cellular, organ and whole animal levels.  We achieved great successes in palliative care, new instrumentations to monitor the growth and development, of detection, new anticancer drugs, etc…  The list is quite long when you consider the incremental scientific advances.  For the lay person who simply wants to know if we have the means to cure or even a definitive means to prevent, then the answer would be more disappointing—we are still quite far away.  If one looks at it from a historical analogy we are still in the Renaissance Period.  Certainly we have overcome the Dark Ages and chasing fervently for answers.  We have yet to reach Enlightenment and many more, like Dr Williams, will fall victim till we do.

We have sent spaceships to the distant planets and beyond.  We have sent submersibles to the deepest depths of the oceans.  Why is the cancer problem so difficult, you may ask?  The answer is because it’s a biological phenomenon, not a physical one where all the variables are predictable and easily quantifiable. The cancer cell is a tough opponent—it mutates, it can develop resistance to drugs, it can grow faster than most normal cells, it can hide inside tissues, it can travel at will, it can lie dormant and it can make the blood vessels migrate to it to keep supplying its growing needs.  If there is an equivalent of a Superman in cells, the cancer cell is it!

I have no answers either and can only offer a philosophical view why it is this way.  The cancer cell is a cryptic enemy.  It hides in plain sight.  It blends with the environment.  And it is not a foreign body that exhibits flamboyant markers to separate it from the rest of your cells.  It is one of your own, just behaving badly by nature or by other unknown external factors that stimulated it.  In many ways, the cancer cell is parasitic, like the parasitic wasp that lay eggs on other insect larvae.  The newly hatched wasps consuming the victim till they emerged out of the victim’s body, like the monster in the movie “Alien.”  Yet, it is not quite all that either.  Cancer grows within our tissues, taking the cellular machineries of the host to propagate itself to the point that it kills the host and itself in the process.  It is also like a virus, infecting the cells, dividing to create new viruses, rupturing the cells to invade more cells.  Like cancer, the virus hides from the immune response by masking itself, pretending it is part of the body.  There are many biological analogies I can recite that explain cancer more, but always there are exceptions.  No living organisms, even plants, escape the presence of cancerous growth.  Sharks, once thought to be immune from it, is now found to also have them.  It is just that sick sharks simply get eaten by their fellow sharks so that sick animals are rarely detected.

Fighting cancer is like fighting a war in human scale, not the traditional, conventional, symmetrical one where you know who the enemy is and where they generally are.  This cancer fight is a pure asymmetric warfare, a guerilla action against the state, a conflict between two belligerents exploiting each other’s characteristic weaknesses using strategies and tactics in unconventional ways.  The enemy hides within the population of innocents, yet co-opting the innocents to do their bidding to support its own survival.  The guerilla is part of the society, just an aberrant part, with different ideologies, but looks like everyone else.  The guerilla mutates into different forms to avoid surveillance, changes tactics to adjust to situations.  The larger force trying to maintain control expends massive efforts,  materiel and fighting elements to keep the guerillas in check, catching a few out in the open, but missing many that blends well with their environment.  They lay dormant when times are bad.  They recruit new members to replace the lost ones and wait for the right time to strike back at the government’s weakest point or weakest moments.  The cycle of attrition goes on indefinitely at times, sapping the strength of the presumably stronger force little by little.  This cancer war is no different than Afghanistan, Iraq, Vietnam and others like it.

The only difference is that cancer has no ideology that we understand in human terms.  No single purpose other than the survival of its own kind.  No plans to invade other bodies outside of the confines of the single human host. No aspirations and none of the awareness that the death of the host equals its own death as well.

How do we win this war?  Certainly not through the current dogma we are following now.  The successes are incremental and easily reversed by unforeseen events, like drug resistance and mutations of the cancer cells to evade immune surveillance.  It is certainly not going to be won by drugs that simply give 4 months of life extension at best for the value of $93,000 as in Provenge.  It can only be won by asymmetric thinking, with by new ideas out of the mainstream, out- of- the- box.  But such a war against cancer has to be a determined one, fueled not by massive amounts of money directed at everything else under the sun, but a targeted approach using a new tactic never before taken.  We have enough understanding of what makes a cancer cell unique, what we are lacking is a coordinated strategy, action and purpose.  Asymmetric or not, let’s treat this like a real war, not the symbolic names politicians use.  Let’s fight it the way we won World War II, with both industry and government in synchrony to bring all its massive forces to bear on a single purpose of destroying cancer by targeted means.  It will not be won by simply nit-picking and aimless meandering in broad fronts the way we are pursuing it now.

The last sentences in Thomas Bryant’s 1896 article seem apropos:

It is true that what I have stated is not new….. If the cases I have brought forward have any influence in reminding us of what we have sometimes neglected, or in urging us to do what we cannot fail to recognize to be right, my object will have been obtained; for in our profession, as in many others, the old saying is too true, “That more error is wrought by want of thought, by far, than want of brains.”

Success in a scientific endeavor comes on the heels of the mini-successes that others had made long before.  I think we have learned so much in the last decade alone and it’s time to somehow integrate these into a more meaningful course of action.  Perhaps, in the not so distant future, we can save another Lloyd Williams from being killed by cancer in the midst of fulfilling his dreams.

Jonathan R. Matias, Chief Technology Officer

Poseidon Sciences Group, New York, NY

www.poseidonsciences.com

Additional reading

http://seer.cancer.gov/statfacts/html/prost.html

http://www.ncbi.nlm.nih.gov/pubmed/

Liesching CE (1894) Br Med J., 1(1745):1241.  htttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2405244/pdf/brmedj08955-0009b.pdf

Bryant T (1868) Br Med J., 2(415):608-609.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2311200/pdf/brmedj05591-0002.pdf

This article is dedicated to:

DR. LLOYD A. WILLIAMS

a neurosurgeon and a dreamer who loved science, medicine, music, philosophy and most of all, his family

The aging process and the ‘7-year Itch.’ Reflections on senescence from the summit of Mt. Colden

My blog entry seems always much longer than I had planned and this one will not be short either.  I might as well make this a tradition.

The thought of aging, as a young man, was farthest from my mind.  It was something my parents and others were going through, not me.  That mindset was a long, long time ago.  Now it’s different.   As I think about the aging process today, three things come to mind:  Mt. Colden; the 7-year itch; and an idea about aging from the past. Continue reading

The biology of being oily. Something old and something new.

      Relax.  This is not another story of the BP Deepwater Horizon oil spill in the Gulf of Mexico.  This is even more up close and personal—it’s the daily oil spill on your skin. 

      It’s the middle of the New York summer.  You sweat profusely most of the time.  Worse, your natural skin oils just oozes out of control like the Deepwater Horizon pipeline to give you that uncomfortable, shiny, unhealthy look.   Ladies, makeup just won’t hold long enough.  You’re back again to the powder room to fix the ‘paint job.’  Guys, especially those who like their heads closely shaved as if they just came out of army boot camp or just out of jail, oils just drips down your face and make your head shine like a brand new bowling ball.  If you are acne prone, then life gets even more miserable.  And it’s all because of that tiny gland, called the sebaceous gland, alongside your hair follicle that spews out natural oils, called sebum.  In the US, oily skin is a $1.2 billion dollar over-the-counter industry and about $ 2.5 billion for prescription drugs, if you have bad acne.  Part of the success of that industry is because of people like you and me, the unlucky majority of really oily folks.

      This topic is quite interesting for me for two reasons.  First, I did spend a decade and a half in the olden days doing dermatology research, especially on sebaceous glands and hair.  Second, just through serendipity, I have the answer to our oily problem.  Now that I got your attention, let me tell you a little about why you need oil and how it happens to mess up your life too (Yes, sounds like the same argument for crude oil).

Cross-section of the skin showing the sebaceous gland and hair

      There is an average of 100,000 hairs on your scalp, including fine barely visible hair and thick ones.  Then there are those non-pigmented, fine hairs on your face, arms, legs and back.  You are born with the same number of hair until you die, barring any major personal catastrophe like setting your hair on fire.   In some men and women, the hair gets thinner and less pigmented giving that balding look if one is predisposed to baldness or the thinning look that comes with age.  And, with each hair is your life time supply of oil from the sebaceous gland right next to it.  Besides that we have the much larger apocrine sweat glands in our armpits, around the nipples and the genital area that produces more sweat.  Initially odorless, the apocrine secretions become odorous depending on the mix of microorganisms present on your skin.

      Some of us have bigger glands than others; those unlucky few have overactive ones.  The sebaceous duct opens to the pores that deliver the oil outside of the skin.  It oftentimes gets clogged with oil and dead epidermal cells and then you get blackheads or whiteheads.  For many, this is already bad enough.  But, for the 85% of teenagers and the minority of young adults in this country, it can transform into full blown acne when the trapped oils cause inflammation because the acne bacteria, Proprionibacterium  acnes, starts proliferating using oil as its food source (Remarkably sounding like the oil eating marine bacteria in the Gulf) and converting the oil into irritants.  Just think of it as fresh butter off the grocery store turning rancid after you leave it out in the counter for a while.  By then you will be running to the corner drugstore to get some over the counter medication or go online for the super high tech de-plugging, skin rejuvenating, over-priced products shown on TV.

      Both men and women get acne.  The glands respond to the male hormone, testosterone, which the sebaceous cells convert to dihyrotestosterone to stimulate more oil production.  The sebaceous cells at the base of the gland starts filling up with oil.  It gets bigger and bigger as it is pushed out towards the center of the gland by new cells dividing and growing behind it.  When totally filled to capacity (sort of like an oil tanker about to run aground), the cell bursts open into the open cavity of the gland and the spilled oil gets pushed up and out of the pores.  Now you have a full blown oil spill and one that you can’t stop by capping the well.  Women produce testosterone too from the adrenal glands, from the ovary or convert estrogen to testosterone at the level of the cell where enzymes convert these precursor hormones to more active ones.   Some of us also have over active enzymes in the skin that convert more than it should or have more protein receptors than bind the hormone, transport it to the nucleus of the cell, stimulating more cells to divide and more oils to form.  This is the biological recipe for your own personal nonstop oil spill.

      You would think that since oils on our skin are such a pain, why it did not shrink throughout evolution as human beings get less and less hairy?  Who needs oil anyway?  Well, your natural oils lubricate your skin, preventing it from dehydrating and the thin coating of oil on your hair keeps it from drying up.  The chemical composition of sebum is so uniquely different from other natural oils in our body.   Why this is so remains a mystery to science, for now.  Certainly there are antimicrobial peptides, such as cathelicidin, beta defensins and histone H4, present in the sebaceous glands that can kill Staphylococcus aureus and P. acnes.  Moreover, acne is a concern probably only in the last 5,000 years, too short of a time span for evolution to allow natural selection for people with smaller glands or none at all.  Or maybe, pimples were sexy before 5,000 years ago.

      But, I think our skin oils have a higher purpose and that is to give our uniquely individual scent.  In non-mammalian primates, such as gerbils, rats and mice for example, sebaceous gland secretions are the means of communicating individual identification and sexual attraction.  Most likely early humans identify each other by their scent.  Perhaps, the sense of smell was more heightened as a means of communication before language was invented.  It still persists in our modern world only in some aboriginal cultures.  In the Desana tribe of the Amazon and the Batek Negrito of the Malay Peninsula, tribal membership is based on similarity of body odor and marriage is allowed only to a person from another tribal group with a different odor.   The Ongee of Andaman Islands, the Bororo of Brazil and the Serer Ndut of Senegal all recognize personal identity by the individual’s smell.  I remember my college Anthropology 101 seeing photographs of aborigines from Papua New Guinea during their ritual of smelling the face, armpits and chest to recognize and welcome visitors from another tribe.  Now, you can’t even dare to try that in the New York subway without getting seriously hurt or ending up in jail.

      As human beings created larger, more complex societies, the value of smell has faded from memory and is retained in social customs without true connection to the sense of smell.  An example is the Indian custom of smelling someone’s head as an affectionate greeting, a ritual dating back to thousands of years and even chronicled in ancient Indian texts as a “the greatest sign of tender love.”   That understanding in today’s society is translated to a more commercial one, looking for the smell that pleases, that creates the urge to buy, that stimulates other senses, and especially that masks other smells.  The sense of commercialism is starkly prominent in the bewildering array of perfumes in the market today. 

      Current research on smell is a sophisticated science using astounding technology that allows one to identify individual chemicals among the thousands that permeate the environment or that comes off the surfaces of plants and foods.  While most research are in the food applications of smell, the more intriguing ones are on the search for that pheromone that attracts the opposite sex, the very basic of human interactions.  The article by Saxton and his colleagues from the University of Liverpool described a steroid called androstadienone presumably from sebaceous/apocrine secretions that contribute to the smell of sweat and saliva that influence how women perceive the attractiveness of a male.  What’s interesting was that the test environment for that study was the process of ‘speed-dating,’ that strange new ritual of the modern era, so we thought,  that I am sure the Desanas, Baroros, the Ongees will find curiously familiar.

      Since we don’t need so much oil in our modern world, how do we get rid of it and acne along with it?  That has been a seemingly endless chase for solutions since the ancient Greeks and Egyptians.  Today’s armamentarium includes remedies, such as sulfur, that are as old as the first written language.  To cover all of these will bore you to death and, if you are already suffering from acne, you already know all about these anyway:     

Intra-lesional steroid,  benzoyl peroxide, antibiotics, retinoids, antiseborrheic medications, salicylic acid, alpha hydroxy acid, azelaic acid, nicotinamide, kera-tolytic soaps, combined estrogen/progestogen contraceptives,  antiandrogens, topical retinoids such as tretinoin (Retin-A), adapalene (Differin), and tazarotene (Tazorac), isotretinoin (marketed as Roaccutane, Accutane, Amnesteem, Sotret, Claravis, Clarus), nNicotinamide, (vitamin B3), Naproxen or ibuprofen for their anti-inflammatory effects, dermabrasion,  phototherapy, deep penetrating light therapy, photodynamic therapy, surgical lancing, laser treatment, aloe vera, neem, turmeric, papaya, ananthamoola, azelaic acid (brand names Azelex, Finevin and Skinoren), heat, pantothenic acid, tea tree oil, zinc, tetracyclines, low glycemic index diet..…just to name a few.

Some are  just methods, others are purely synthetic, some are derivatives from petroleum and the rest are natural extracts of plants.  What is disconcerting these days is that what we thought was safe yesterday, is the new toxins of today.  Pregnant women particularly are so concerned when using cosmetic products these days.

The idea

      All these treatments are meant to shrink the sebaceous gland, kill the bacteria, reduce the inflammation or get rid of the oil.  The last one, getting rid of the oil, received the least serious interest since you can’t make much money by simply selling blotting paper or selling soap to disperse the oil (dispersants in the Gulf oil spill are made from soap ingredients by the way).  The commercial solution is always something that either sounds like a drug or is a drug or some esoteric formulation that combines all of these anti-acne effects for $80 bucks an ounce.

      Why not just get rid of the oil?  Seems easiest to do and least likely to involve anything that will have serious side effects.  Just like skimming the oil off the ocean surface after the BP oil spill.  It gets rid of the unsightly mess, keep the wildlife from being seriously damaged and not worry about the oil washing to the shore.  Why not do the same for your face?

Ifrenel clay powder and single use daily pack

      The idea is not unique, even for us.  We’ve thought about it for many years, but never so seriously until serendipity took over (For the etymologically challenged, the word came from the name, serendip, given by Indian sailors thousands of years ago to the island we call now as Sri Lanka because they found it purely by chanceIn those days, mariners rarely venture too far out of sight of land because they thought the  world was flat and the ship falls off beyond the horizon—unless of course when  storm blew you off course and land in Serendip by accident).  Biological ideas don’t come often.  Eureka moments are far between the ‘hurry up and wait’ mode of science.  More often it comes through an unrelated event or a side observation.  In this case, we were busy trying to develop a formulation for our barnacle, insect and shark repellent projects, looking at ways to improve the effect of this nontoxic, edible repellent.  At the time we were working with a range of materials including clay.  Also at the same time, it was a hot humid summer day, oil oozing out of my face.  I thought wistfully that maybe I should try some of these clays on myself as I have never liked the thought of using blotting paper (I did try blotting paper before just to be fair) and washing with soap just moves oil around. 

Decline in the perception of oiliness in women after single application of Ifrenel clay

      I rubbed this new clay composition on my skin, then washed it off quickly because guys usually don’t want anything on that makes them look like a girl—no offense.  Something unique happened.  The oil went away with the clay, totally absorbed and washed off.  And something else, my skin was softer, tighter, no shine and most of all, remarkably smoother—for almost the whole day!  I do have my sensitive moments too and I had been around skin care companies long enough to know that we got something really amazing.

      We eventually gave the clay a new name, Ifrenel Clay TechnologyTM, just to make it sound sexier (and French), but the composition is a proprietary mixture of clay materials found in nature.  These clays are rare, not something you will find just anywhere, except from a few mine deposits in the United States.    When one applies it to the skin only once, Ifrenel keeps the oil away for over 24 hours.  When tested on women volunteers who rated their “oil spill” from 1 to 5, with 5 being your equivalent of the Deepwater Horizon scale, the feeling of being oily went away in 10 minutes and lasted for the next 24 hours, at least.   My daughters started using Ifrenel two years ago instead of buying those brand items off  TV ads (saved me a lot of bucks). 

Reduction of acne in women after daily use of Ifrenel

      Then something else happened.  Acne went away and rarely come back, unless they forget using it.  So, off we go running another clinical trial and demonstrating that one can actually clear acne in a week.  The inflammation stopped within two days.  That’s because the acne bacteria don’t have anything to feed on and maybe taken away with the clay too.  Cystic acne can be painful to the touch, just ask anyone who has it. No longer after only two days of a single use each day because the acne bacteria is not there to convert oil into irritants.  But remember, Ifrenel is not a cure.  It just takes away your oil spill.  Acne will come back after a week if you stop clearing your oil away.

      This was a pleasant distraction from our usual marine science projects and certainly far from our malaria projects too.  Off we went to file patents for this, then launched a new company based on the technology, called Ifrenel (from I feel fresh and ‘naturele’).  It will be a hard fight to get it in the store shelves, but we will manage because we aree so confident that it works after tests in over a thousand women.  For men, you can apply it on your face and your shiny ‘bowling ball’ will have that matted, healthy look very quickly, without anyone knowing about it.

      Is this so unique just because I stumbled on it?  Without sounding like an infomercial, IfrenelTM (and its companion product called ClaynTM for just those with the oily problem without acne) is all natural clay.  It works by applying the powder on your skin when it’s dry, just before you wash it, by rubbing with your fingers (see video link below).  This also gives you that microdermabrasion workout that removes dead skin and residual cosmetic chemicals off your face.  When you wash it away, the oil goes with the clay-water mix.  Can’t apply when you skin is wet; the Ifrenel clay will absorb water and lessen the effect.  Not an easy thing to do because we are all conditioned to the soap and water routine.  This is better for you than soap so get used to it quick!  Without oil, your P acnes bacteria don’t grow, your pimples and blackhead disappear and your skin is smooth as silk all day.  No kidding.  And, your make up stays on much longer, saves you money in the long run and spare the wear and tear on your shoes going back and forth the powder room.  There are no emollients, no fancy petroleum chemicals and no silicone to make it smooth.  It’s just your fingers, your skin and Ifrenel clay.

       And how about odor?  It does even more remarkable things that I will tell you one day soon.  I might get to like dermatology research again after all these years.

      Now that this oil spill problem is solved, time to get back to more marine sciences.  Next time I will tell you about shark repellents.  Not having one at the wrong time can really mess up your day permanently.

Jonathan R. Matias

New York, NY

Poseidon Sciences Group   www.poseidosciences.com

About Ifrenel   http://www.ifrenel.com/

http://amominredhighheels.com/ifrenel-acne-skin-therapy/

The science of Ifrenel            

http://ifrenel.com/index.php?about&aid=5

http://www.ifrenel.com/upload/about/ifrenel_dr_marty_sawaya_oily_skin_acne.pdf

http://ifrenel.com/index.php?demo  (how to use the product; must see if you want to get best benefit)

On the science of smell

http://www.lifeinthefastlane.ca/science-of-the-smell-factor/weird-science

Saxton TK, Lyndon A, Little AC, Roberts SC. 2008 Evidence that androstadienone, a putative human chemosignal, modulates women’s attributions of men’s attractiveness.  Hormones and Behavior. 54(5):597-601.

This Fracking problem: Chasing the solution to this controversial mining issue

      Fracking ! Sounds like a curse word, and for some people along the Marcellus Shale regions between New York and West Virginia, it already is.  Or, it may sound something like an illegal activity folks engage in somewhere in a dark back alley.  And, that also reminds me of the word “fragging” used by soldiers usually against their own senior officers, often involving a fragmentation grenade without the pin.  English is such a flexible language!

      Yesterday, there was a well attended public hearing in Pennsylvania sponsored by the EPA on the use of fracking to release natural gas from shale deposits underneath the earth’s surface.  It was a heated “debate.”  One side arguing how dangerous it is to their local environment while the industry is saying that it has been proven safe for decades.  July 22 was certainly a one ‘fracking’ day for everyone there.  It is also uncanny that it was the same day we announced a new project to develop an alternative idea to reduce the environmental impact of fracking.  Seriously, I did not even know about the public forum until I read it in Tom Zeller’s blog entry in the NY Times.  It was just serendipity.

       For those who are not familiar with the ‘fracking” business, let me give you a quick run down.

Schematic representation of the hydraulic fracturing operation

      The Marcellus Shale Formation, a geologic feature located between New York State and West Virginia, holds an estimated 262 trillion cubic feet of extractable natural gas reserves.  Although this resource has been known for a century, the Marcellus shale deposit became important in the last two decades because of the depletion of other easily accessible gas reserves, the increasing price of oil and the development of the hydraulic fracturing technology by Halliburton that made it feasible to extract natural gas.  Hydraulic fracturing or fracking for short is a process wherein fluid containing sand is pushed at high pressure through a well bore deep into the shale formation to create man-made fractures.  The hydraulic fracturing process involves injection of proppants, typically sand or ceramic beads that are lodged inside the shale to keep the fracture open. The fractured shale allows free flow of natural gas and oil into the pipeline that brings them to the surface for collection.  Over a million wells have been drilled in the Marcellus shale through hydraulic fracturing.

 

Bacteria that cause clogging in fracturing wells

Blame it on the bugs.    Anaerobic iron and sulfate degrading bacteria rapidly proliferate in the fracturing fluids, causing corrosion of the pipes and clogging of the proppants.  Inevitably biocides had to be included in the fracturing fluid to inhibit bacterial growth to keep the gas flowing.  However, in recent years, there has been a tremendous public concern about the environmental impact associated with hydraulic fracturing and, in particular, the possible contamination of the aquifer and nearby streams by biocides and other chemicals present in the fracturing fluid.  This triggered the frantic search for more environmentally benign options to keep anaerobic organisms from proliferating, despite the insistence of the oil industry that the technology is safe.  Considering the economic and strategic value of extracting US oil-gas reserves, an alternative technology needs to be developed as soon as possible to solve this environmental concern.  People are wary of corporations proclaiming safety and it is better for companies to solve the problem than fighting the public perception of another corporate-led environmental catastrophe. 

      Poseidon’s position on this matter?  I am neither pro nor con to fracking.  I think fracking is essential to our country’s energy independence and the continued employment of a whole lot of people during these dire economic times; the industry estimates 280,000 are employed or will be employed.  But, I also think the industry must allay the legitimate fears of the public quickly by solving the issue and finding an alternative option to improve the system.  I am sure you are thinking that sitting on the fence on this fracking problem is not a healthy thing to do.  I neither relish the ire of the Pennsylvanians nor like being at the very bottom of the list in an oil industry event (not that I have ever been on any invitation list; not yet anyway).

      What to do then?  At the risk of stopping all natural gas extraction and exploration, it is imperative that a solution be developed soon to prevent bacterial overgrowth in fracturing wells.  Because it takes only a small amount of bacteria to contaminate the well, introduction of bacteria-free fluids or other technologies proposed to date have had marginal impact on the overall problem.  A biocidal approach is still the best method.  We still need to get those Gallionella and Desulfovibrio bacteria from clogging the wells and corroding the pipes.  However, the biocidal material should be environmentally friendly and must not freely diffuse away from the bore hole.  This is where the daunting challenges lie.

      Technological advances often times are not at the same pace with the response necessary to negate environmental issues that result from catastrophic failure or unforeseen damage. The case in point is the BP Deepwater Horizon oil spill in the Gulf of Mexico.  For this reason Poseidon has embarked on an ambitious program, called the Nereus Project, to develop technologies that help ameliorate environmental problems associated with technological advances.  While developing technologies for oil spill cleanup, the Nereus Project has also been looking at alternative options that would prevent biocidal actives from leaching out to the environment from fracking fluids.

     This fracking issue is a hot topic.  Tempers are flared, businesses are at stake, livelihoods are threatened and catastrophes, both real and imagined, are all in the now time frame.  New technology development takes time and tons of money.  But, scientific advances in other fields might be applied here.  It is just a matter of looking and selecting the right ones that are available.  This time we got lucky.

Ceramic proppant coated with selenium

      On July 21, 2010, Poseidon Sciences and Selenium, Ltd. entered into a strategic partnership to develop coatings containing covalently bound selenium [Se].  Why Se and not silver or copper?  Only Se can be permanently attached to a surface and yet continue to be biologically active.  Se is approved by the FDA as a nutritional supplement as an essential nutrient and it also possesses anti-bacterial properties through the release of reactive oxygen species, such as hydrogen peroxide.  Upon contact with Se-treated surface, the reactive oxygen released by Se kills the bacteria on contact, thereby preventing biofilm formation and clogging. This killing effect is short range and does not extend far from the coated surface.  A “green technology,” Selenium’s SeLECT™ technology was originally developed within the Texas Tech University [TTU] System by Dr. Ted Reid and Dr. Julian Spallholz, co-chief scientists of Selenium, Ltd. and TTU professors.  This proprietary technology already achieved FDA 510(k) approval for two separate Class II medical devices and the first coated antimicrobial orthodontic products were introduced to the market in 2009 to prevent dental plaques.  

       When applied to industrial applications, Selenium’s patented SeLECT™ technology is marketed under the name SeGuard™. Because it is bound permanently to the coating and yet remains bioactive, Se does not have to leave the surface to exert its antimicrobial action.  Thus, leaching of SeGuard™ to the environment is prevented.  This technology will find use in the industry as a coating on proppants, sand and other materials used in hydraulic fracturing and as coatings on the iron pipes used in boreholes.  Covalently bound SeGuard™ on the surface of ceramic proppants for an example will be the next generation of non-leaching, environmentally-friendly biocidal technology. 

      If this essential nutrient for the human body is also good enough for our teeth, kills bacteria on contact and doesn’t leave the surface, what else can we ask for?

     Where to go from here?  We are still in the process of proving the concept against iron and sulfur reducing bacteria.  And, we are very optimistic since Se’s antimicrobial effect is universal.  How to make this technology work for the fracking industry will need some serious collaboration with the oil industry players and the EPA.  We do need to act faster than usual to make this happen.

     Since a vital strategic industry, people’s livelihood and the environment are at stake here, only really serious “fracking” people need apply.   

Jonathan R. Matias

Poseidon Sciences Group

New York, NY

Who is Nereus?

In Greek Mythology, Nereus was the son of the Titans—Pontus (the Sea) and Gaia (the Earth).  Always known as the “Old Man of the Sea” for his truthfulness and virtue, Nereus fathered the Nereids or sea nymphs, known for their friendly help to mariners in stormy seas.   

For further reading, please see these links:

This blog entry is derived in part from a July 22, 2010 Poseidon Sciences newsletter:

http://www.poseidonsciences.com/Selenium_environmentally_friendly_biocides-Hydraulic_Fracturing_Poseidon_Sciences.pdf

Regarding the Nereus Project:

http://www.poseidonsciences.com/nereus.html

On the selenium technology:

http://www.selenbio.com/technology/index.html#coatings

On the fracking problem:

http://green.blogs.nytimes.com/2010/07/23/passions-on-display-at-e-p-a-meeting/?src=me&ref=science

http://green.blogs.nytimes.com/2010/07/22/huge-turnout-for-e-p-a-fracking-hearing/